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Implicit coordination for 3D underwater collective 
behaviors in a fish-inspired robot swarm
Florian Berlinger1,2*†, Melvin Gauci1,2*, Radhika Nagpal1,2

Many fish species gather by the thousands and swim in harmony with seemingly no effort. Large schools display 
a range of impressive collective behaviors, from simple shoaling to collective migration and from basic predator 
evasion to dynamic maneuvers such as bait balls and flash expansion. A wealth of experimental and theoretical 
work has shown that these complex three-dimensional (3D) behaviors can arise from visual observations of near-
by neighbors, without explicit communication. By contrast, most underwater robot collectives rely on centralized, 
above-water, explicit communication and, as a result, exhibit limited coordination complexity. Here, we demon-
strate 3D collective behaviors with a swarm of fish-inspired miniature underwater robots that use only implicit 
communication mediated through the production and sensing of blue light. We show that complex and dynamic 
3D collective behaviors—synchrony, dispersion/aggregation, dynamic circle formation, and search-capture—can 
be achieved by sensing minimal, noisy impressions of neighbors, without any centralized intervention. Our re-
sults provide insights into the power of implicit coordination and are of interest for future underwater robots that 
display collective capabilities on par with fish schools for applications such as environmental monitoring and 
search in coral reefs and coastal environments.

INTRODUCTION
The natural world abounds with self-organizing collectives, where 
large numbers of relatively simple agents use local interactions to 
produce impressive global behaviors, such that the system as a whole 
is greater than the sum of its parts (1). Well-known examples in-
clude social insect colonies, bird flocks, and fish schools. Fish schools 
are particularly impressive—collectives of thousands migrate long 
distances, shoal together in coral reefs, efficiently search for re-
sources, and even form dynamic shapes such as flash expansions or 
bait balls to evade predators and capture prey (2–5). A quarter of 
fish species school for their entire life, and about half the species 
school as juveniles (2). Fish achieve many benefits from this coop-
eration, including higher success in foraging, migration, and preda-
tor evasion (5–8). These collective behaviors emerge mostly from 
implicit coordination—many fish species base schooling decisions 
on visual observations of nearby neighbors, and several species use 
their lateral lines to perceive neighbors in low-visibility conditions 
(9–13). By making decisions based on local perception of neighbors, 
these fish schools elegantly bypass the inherent challenges of under-
water communication, achieving enormous scalability and robustness 
through decentralization (3, 4, 14–16).

Mathematicians and engineers have strived to understand the 
mapping from local interactions onto global behaviors and vice versa 
in a quest to understand natural collective intelligence and engineer 
artificial robot collectives (17–20). Recent advances have demon-
strated successful implementations of self-organized homogeneous 
robot swarms as large as 1000 units inspired by cells and social in-
sects, albeit limited to two-dimensional (2D) local interactions (21–26). 
For example, the SWARM-BOTS project demonstrated ant-inspired 
collective transport and chain formation (26), the Kilobot project 
demonstrated large-scale shape self-assembly (21, 24), and the par-

ticle robotics project demonstrated emergent complex motion (23). 
In the 3D aerial domain, large drone swarms have displayed com-
plex maneuvers, although mainly relying on centralized base sta-
tions or external global position information rather than local and 
self-organized interactions (27–33). For instance, Intel’s Shooting 
Stars (used at the 2018 Winter Olympics) and the Crazyswarm are 
centrally controlled by a single computer and depend heavily on the 
Global Positioning System (GPS) and motion capture, respectively 
(27, 28), whereas the VIO-Swarm uses local visual inertial odometry 
(VIO) to determine position (29). Other aerial swarms have demon-
strated decentralized self-organization but rely on the exchange of 
GPS locations among robots or on a signaling home beacon to infer 
relative positions (30–33). Fully decentralized coordination in 3D 
(search and retrieval) was achieved by the Swarmanoid, a hetero-
geneous swarm composed of wheeled, climbing, and flying robots 
that cooperate (34). The flying robots attach to the ceiling and use 
infrared wireless communication to self-organize local positional coor-
dinates, providing navigation aid to ground and climbing robots.

Compared with above-ground collectives, 3D underwater robotic 
systems have not yet been able to achieve similar levels of self- 
organization. Several previous projects have envisioned robot col-
lectives for applications from environmental monitoring in sites of 
high ecological sensitivity (e.g., coral reefs) to inspections of under-
water infrastructure and search-and-rescue operations (35–42). In 
addition, such collectives can provide a synthetic means to under-
stand how fish school complexity arises from the decisions of indi-
vidual fish. However, aquatic environments impose substantial 
challenges on perception and locomotion and especially limit com-
munication and sensing; traditional above-ground communication 
methods such as wireless radio perform poorly underwater, and 
position localization methods such as GPS are unavailable. As a result, 
most underwater swarms coordinate only at the surface or have no 
coordination whatsoever (35, 42). For example, the commercially 
developed Data Divers by Apium Swarm Robotics (43, 44) commu-
nicate and spread at the surface before diving for samples, and the 
M-AUE robots (35) drift uncoordinatedly with the ambient flow to 
sample the ocean for offline data reconstruction. Such systems 
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bypass underwater 3D interactions to focus on specific environ-
mental tasks; as a consequence, they are unable to achieve the com-
plex collective behaviors that fish schools display.

Some research groups have attempted more complex underwater 
coordination by designing new explicit communication and local-
ization methods [e.g., optical/acoustic modems (36), centralized or 
networked underwater base stations (38, 39), and bio-inspired electro-

ception (45)], demonstrating limited coordination usually with two 
robots. A recent project, CoCoRo, built a heterogeneous swarm 
combining multiple modes of mobility and communication: surface 
robots, underwater robots, and floating base stations, using radio 
frequency communication above water and modulated blue-light and 
acoustic communication underwater (38). Similar to the Swarmanoid 
project (34), CoCoRo provided a compelling vision for heterogenous 

Fig. 1. Blueswarm platform. Bluebot combines autonomous 3D multifin locomotion with 3D visual perception. (A) Two cameras cover a near-omnidirectional field of 
view (FOV). One caudal and two pectoral fins enable nearly independent forward and turning motions; a dorsal fin affects vertical diving for depth control. (B to D) Seven 
Bluebots with streamlined, fish-inspired bodies are used in Blueswarm experiments. (E and F) The fins are powered by a custom electromagnetic actuator (see Materials 
and Methods). (G) Information on neighboring robots extracted from images enables local decision-making. (H) Fast onboard image processing is achieved by setting the 
cameras such that only the two posterior LEDs (and potential surface reflections) of neighboring robots appear in images. For illustration purposes, pairs of LEDs belong-
ing to the same robot are color coded and have a white outline; a pair of the same color without the outline marks the respective surface reflection. (I) Bluebots’ relative 
positions and distances are derived from pairs of LEDs assigned to individual robots (color-coded vectors), facilitating self-organized behaviors such as visual synchroni-
zation, potential-based dispersion/aggregation, dynamic circle formation, and collective search.PH
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collaboration, as well as engineering design insights; however, lim-
ited experimental studies of 3D submerged collective behavior were 
published (37). Although heterogeneity potentially enables more 
sophisticated behaviors through multimodal communication and 
task specialization, it comes at the cost of increased engineering and 
control complexity.

Overall, the focus of underwater multirobot systems has been on 
coordination through explicit and semicentralized communication, 
in contrast with coordination based on implicit and local percep-
tion used by fish. This approach has had limited success; compared 
with the incredible 3D maneuverability of schooling fish or even 3D 
aerial robot swarms, current 3D underwater artificial systems demon-
strate a large gap in achievable collective complexity. Inspired by 
fish schools that coordinate using vision, we aim to achieve under-
water robot collectives with similarly seamless and coherent coordi-
nation, high degrees of maneuverability, and independence from 
assistive technologies. Here, we demonstrate multiple complex 3D 
underwater collective behaviors, with a fish-inspired miniature 
underwater robot swarm, Blueswarm, that uses only local implicit 
vision-based coordination to self-organize (Fig. 1). We show that 
multiple types of 3D collective behaviors—coordinating time, space, 
dynamics, and task sequencing—can all be achieved using this very 
simple mode of communication and without any externalized assist-
ance in position sensing or control. Our work experimentally vali-
dates the concept of a collective of autonomous underwater robots 
with implicit, self-organized, and decentralized coordination in 3D 
space. The Blueswarm platform enables the systematic laboratory 
investigation of realistic and broadly applicable swarming algorithms 
that can pave the way for more reliable real-world ventures with 
robot swarms. Capitalizing on the power of decentralized autonomy, 
we provide experimental evidence and new results for underwater 
3D collectives (see Fig. 2).

RESULTS
Fish-inspired robot design with 3D 
perception and locomotion
We designed miniature (235 cm3), auton-
omous, fish-inspired, underwater robots 
called Bluebots to systematically study 
self-organized 3D coordination in the 
underwater domain. Two fundamental 
individual-level capabilities for self- 
organization are 3D awareness of neigh-
bors’ distance and bearing and swift 3D 
motion response to neighbors. We realize 
these capabilities with Bluebots using a 
suite of sensors and actuators that enables 
perception and locomotion along all three 
dimensions in space (Fig. 1, movie S1, 
and section S1). In several species of 
schooling fish, vision is the dominant 
sensory modality (4); these schooling 
fish have spherical 3D vision with a 
small blind spot (~40°) in the rear (13). 
To rapidly detect members of their school, 
many such species have evolved special-
ized visual patterns (e.g., “schooling marks” 
and prominent stripes), and nighttime 
schooling fish, such as the flashlight fish 
Anomalops katoptron, exploit individual 

bioluminescence (14, 46). Inspired by these natural systems, Blue-
bot achieves 3D vision and neighborhood sensing using a combi-
nation of cameras and blue-light light-emitting diodes (LEDs). Two 
cameras with 195° wide-angle lenses offer a quasi- omnidirectional 
field of view with an emphasis on the critical anterior direction (35° 
overlap) and limited only by a narrow 5° blind spot at the posterior 
of the robot (Fig. 1A). The Bluebots incorporate a pair of vertically 
stacked blue-light LEDs at the posterior as a simple visual feature 
that allows neighbors to quickly identify distance and angular 
position of each other via projective geometry (Fig. 1, G to J). 
Vision-based algorithms for neighbor detection that deal with the 
spherical distortion of the camera lens, LED reflections at the water 
surface, and the assignment of LED pairs to individual robots are 
presented in Materials and Methods. Image acquisition and processing 
is computationally expensive, limiting the sensing iteration frequency 
to 2 Hz. However, because the Bluebots move at speeds close to 
one body length per second (BL/s), we are able to achieve sensing- 
to-motion response times that are similar to schooling fish such as jack 
mackerels (47). Using this vision system, we are able to approximate 
aspects of fish vision such as constant awareness and swift re-
sponse to surroundings, and a Bluebot can detect a single neigh-
bor up to 5 m away (measured in air under ideal conditions; section 
S1.3). However, as with real fish (15), the Bluebot’s vision system 
has natural limitations, such as noisy observations when many 
neighbors are present and occlusion from nearby neighbors, 
yielding incomplete and imperfect representations during dynamic 
swarming activities.

A high degree of maneuverability allows Bluebots to capitalize 
on their 3D visual information by exerting 3D locomotive responses. 
Schooling fish, such as surgeonfish and damselfish, exhibit high de-
grees of maneuverability, forming agile coordinated schools in complex 
environments such as coral reefs (48, 49). The streamlined body of 

Fig. 2. Blueswarm’s distinctive features in comparison with other robot collectives. Blueswarm is a 3D underwater 
collective that uses only local implicit vision-based coordination to self-organize. Not depending on any assistance, 
Blueswarm is more autonomous than most aerial swarms. It advances fundamental research on decentralized and 
self-organized robot collectives from 2D to 3D space.
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Bluebot, measuring 130 mm (equal to 1 BL) in the longest dimen-
sion, was modeled after typical surgeonfish (family Acanthuridae; 
Fig. 1, B and C) (50). To achieve high maneuverability, four inde-
pendently controlled fins provide precise locomotion in 3D space; 
this actuation scheme is a streamlined version of a prototype 
demonstrated in our previous work (51). Turning in place, forward 
motion, and stopping in the horizontal xy plane are all achieved 
with two pectoral fins (Fig. 1D, left) and a caudal fin (Fig. 1D, right), 
respectively, and diving along the vertical z axis is controlled with a 
single dorsal fin and slight positive buoyancy. Bluebot is passively 
stable in roll and pitch. Operating at fixed amplitudes, the actuation 
frequencies of the caudal and dorsal fin can be modulated to reach 
cruise speeds of up to 150 mm/s (equal to 1.15 BL/s) and dive speeds 
of up to 75 mm/s. The pectoral fins allow for near on-the-spot turn-
ing at radii as small as 65 mm (equal to 0.5 BL), and 180° changes of 
direction can be achieved in less than 5 s.

The Bluebot design aims for high capability, 3D local perception 
and response, from simplicity, to be easily mass produced for swarm 
research (Materials and Methods). Here, our final Blueswarm has 
seven robots (Fig. 1B) that visually interact with each other in a con-
fined freshwater tank of size 1.78 m by 1.78 m by 1.17 m (or 13.7 BL 
by 13.7 BL by 9.0 BL; fig. S18). All interactions are through onboard 
perception; no external global position information or centralized 
control is used, and all 3D trajectories are tracked for postexperi-
ment analysis (section S5).

Self-organization across time through visual phase 
matching of LED flashings
Using only vision-based local interactions, we report several exam-
ples of self-organized underwater collective behaviors that coordi-
nate groups in time (synchronization), space (controlled dispersion), 
and dynamic motion (milling), ending with a composition of mul-
tiple behaviors to achieve a search operation (Figs. 3 to 6). The first 
behavior that we investigate is spontaneous synchrony, a classic ex-
ample of self-organized coordination in time. Millions of fireflies 
(Photuris lucicrescens) synchronize and flash in unison to attract mates 
(Fig. 3A); studies have shown that this global behavior emerges 
from individual fireflies visually detecting the flashes of neighbors 
and adjusting to match their phase (52). For Bluebots, the ability to 
synchronize can enable time-coordinated actions such as sampling 
of an environment. Our approach exploits flashing as a tacit mecha-
nism to achieve synchrony and is based on the well-known Mirollo- 
Strogatz model (Fig. 3B) (53). Bluebots are initialized with different 
start times and programmed to periodically flash with a nominal time 
interval of tf = 15 s. The program running on each Bluebot proceeds 
in discrete time steps toward the next flash at tf, a 2-s-long light up 
of LEDs, by updating a counter variable n. Whenever a Bluebot i 
flashes, all observing neighbors j jump ahead by m = f(n) steps (Eq. 1). 
Mirollo-Strogatz proved that synchrony is guaranteed under any 
monotonically increasing and concave down function for f(n), for 
instance   √ 

_
 n   

   n  i   =  t  f   →  n  j   = min( t  f  ,  n  j   +  √ 
_

  n  j    )  ∀ j ≠ i  (1)

In experiments with seven Bluebots moving randomly underwater, 
the discrepancy between flashing times quickly decayed as Bluebots 
achieved synchrony within 105 s (Fig. 3, C to E, and movie S2). One 
of the key features of this algorithm is the simplicity of interactions: 
An individual Bluebot does not need to distinguish between neigh-

bors. Because of the importance of time synchronization to many 
applications, several implementations of firefly-inspired synchrony 
exist in sensor networks and robots (54–57). Our results show that 
this same approach also works well underwater, where access to 
global clocks is much more challenging than above ground.

Fig. 3. Self-organization across time. (A) Fireflies flashing in unison. (B) Mirollo- 
Strogatz synchronization model: Firing agents pull up observers closer to their 
firing times, and the pull-up magnitude increases monotonically with time an ob-
server spent already on a given firing cycle. Left: y fires and x is pulled up; right: 
x fires and y is pulled up; result: their phase difference (red) was reduced. After mul-
tiple such rounds, x and y will fire in unison. (C) Seven Bluebots observed LED flashes 
of neighboring robots and adjusted their flash cycles to achieve synchrony (solid) 
after three initial rounds of desynchronized flashing (dashed). The SD  in flash 
times among robots disappeared after four and seven rounds of synchronization 
for uniformly (blue) and randomly (red) distributed initializations, respectively. 
(D) Robots with randomly initialized flash times synchronized slower because they 
partitioned into two competing subgroups (rounds 5 to 7). (E) Stills from the 
randomly initialized experiment show uncoordinated (top, round 1) and synchro-
nized (bottom, round 10) flashing.PH
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Self-organization across space through attractive 
and repulsive virtual forces
Biological collectives also self-organize spatially; for example, fish shoals 
disperse over a region to feed or defend but stay connected as a group 
(Fig. 4A) (5). Control over the spread of a robotic collective is impor-
tant, for example, to disperse robots for better coverage during en-
vironmental sampling or search or to aggregate robots for recovery 
(26). Fish shoaling and dispersion have been extensively modeled 
(5, 17, 18, 58). Most models assume that an individual fish experiences 
virtual forces from nearby neighbors based on distance, with neighbors 
that are too close repelling and those further away attracting, although 

the exact form of the virtual forces is unknown (5). Controlled dis-
persion has also been extensively implemented in 2D ground robots, 
ocean surface robots, and some 3D aerial robots (30, 32, 34, 59–61); 
typically, robots detect relative positions of neighbors by using an 
infrared communication ring or by explicitly exchanging GPS positions 
wirelessly. In contrast, fish use vision to determine relative positions 
of neighbors and implicitly react without any direct communication. 
Regardless of implementation, the emergent result of the virtual force 
model is the same: The fish school or robot swarm tends to disperse 
over an area, and the balance of repulsive versus attractive forces de-
termines the density and spread of the group (5).

Fig. 4. Self-organization across space. (A) A shoal of surgeonfish foraging in a reef. (B) During dispersion/aggregation, a Bluebot (black) calculates its next move (black 
vector) as the weighted average of all attractive (blue) and repulsive (red) forces from neighboring robots. (C) Interrobot forces (red) are calculated as the first derivative 
of the corresponding Lennard-Jones potential (blue) with standard parameters a = 12 and b = 6 and a tunable target distance dt (equal to 2 BL). The forces f are dependent 
on the distance d between robots: f = 0 for d = dt, f << 0 for d < dt (repulsive), and f > 0 for d > dt (attractive). The target distance dt defines the robot density of the collec-
tive. (D to F) 3D dispersion (blue markers, dt = 2 BL) and aggregation (red markers, dt = 0.75 BL) with seven Bluebots. Robot density  changed 80-fold;  = 455 m−3 equates 
to one individual per cube of BL, a density commonly observed in fish schools (64). (G) Dynamically repeated aggregation and dispersion by change of dt between 0.75 
and 2 BL. Black arrows indicate increases (up) and decreases (down) in dt.PH
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To demonstrate coordination in space, we implemented fish- 
inspired dispersion using implicit interactions: Each Bluebot attempts 
to visually determine the relative distance and bearing of all visible 
neighbors in real time, compute their forces, and then move in the 
direction of the resulting 3D motion vector (Fig. 4B and movie S3). 
We picked a commonly used artificial potential, the Lennard-Jones 
potential (26, 58, 62, 63), to model the nonlinear interaction between 
robots based on relative positions extracted in real time from on-
board vision (Materials and Methods). Variables a and b define the 
magnitudes of the repulsive and attractive forces, respectively, and 
were set to 12 and 6 (standard). A single adjustable parameter, namely, 
a target neighbor distance dt, controls the spacing of the collective. 
Neighbors j closer than dt exert a repulsive force on a robot i that 
approaches infinity as robots collide; neighbors farther away exert 
an attractive force that decreases to zero for far away neighbors 
(Fig. 4C). The force contributions Fij of all N visible neighbors are 
obtained by taking the first derivative of the Lennard-Jones potential 
Vij with respect to their distances ∣rij∣. The average of all individual 
forces multiplied with the respective relative positions rij determines 
the next move vector pi of a robot i

    
 p  i   =   1 ─ N     Σ  

j=1
  

N
    F  ij    r  ij   =   1 ─ N     Σ  

j=1
  

N
     

∂  V  ij   ─      ∂ ∣ r  ij  ∣       r  ij    =
     

  1 ─ N     Σ  
j=1

  
N

   −   1 ─  ∣ r  ij  ∣      [ a   (      d  t   ─  ∣ r  ij  ∣      )     
a

  − 2b   (      d  t   ─   ∣ r  ij  ∣     )     
b

  ]  r  ij    ∀ j ≠ i
   (2)

All robots move continuously to minimize forces without being 
constrained to achieve a particular final formation. We tracked 3D 
trajectories for all experiments (Materials and Methods) and report 
on several commonly used metrics (5), such as density, volume, and 
average nearest-neighbor distance (NND).

In the first experiment, seven Bluebots were centrally deployed, 
and we set dt = 2 BL during the first 120 s (“dispersed state”) and dt = 
0.75 BL during the second 120 s (“aggregated state”) (Fig. 4D). 
We measured robot density  as the number of robots N divided by 
the volume V of their convex hull. Results show that the robot den-
sity quickly plateaus within 30 s after dt is set (Fig. 4F) and that a 
large density and volume change can be achieved ( = 12 m−3 and V = 
0.568 m3 in dispersed and  = 990 m−3 and V = 0.007 m3 in aggre-
gated state). In the dispersed state, the convex hull of the Bluebots is 
able to cover a large fraction of the tank (Fig. 4E), amenable for cov-
erage or search. In the aggregated state, the robots group tightly to-
gether, although this creates collisions that temporarily break the 
group (movie S3). As an additional metric, we measured average 
NND = 0.8 m (~6 BL) in dispersed and NND = 0.2 m (~1.5 BL) in 
aggregated state (section S2.1). The parameter dt acts as a conserva-
tive lower bound for NND because a single too-near neighbor can 
trigger additional dispersion due to the heavily nonlinear Lennard- 
Jones potential (Materials and Methods). Experiments with dt > 2 BL 
did not increase dispersion because Bluebots started to collide with 
the tank boundary frequently. When fish congregate in schools, 
typical densities are on the order of one fish per cubic BL (64), with 
distances between nearest neighbors ranging from 0.5 to 4 BL (65), 
which is similar to distances achieved by Bluebots during density 
control experiments.

To demonstrate dynamic and repeatable control over robot 
density, we conducted a second experiment (Fig. 4G and movie S3), 
during which dt was varied four times in the following sequence: 
(dt = 2 BL, t = 0 s), (dt = 0.75 BL, t = 30 s), (dt = 2 BL, t = 60 s), and 

(dt = 0.75 BL, t = 90 s). Our density results mirror the results from 
the first experiment, showing that it is possible to quickly and re-
peatedly switch between dispersed and aggregated states. The tra-
jectories in this condition resemble trajectories seen during “flash 
expansion” (2, 5, 66), where an aggregated group of fish or insects 
are startled by an overhead predator and seem to “explode” away 
from the center of the group but then later reaggregate. In our experi-
ment, when the target distance shifts from aggregation to dispersion, 
the artificial potential directs Bluebots away from the center of the 
swarm, seemingly aligning their heading radially away from the center 
of the aggregation without any explicit alignment sensing. Overall, 
our results show that at the system level, potential-based dispersion/
aggregation in 3D can be achieved underwater, using purely local 
visual interactions without external assistances. However, further 
analysis showed that at the local level, Bluebots see fewer neighbors 
than theoretically possible: 4.9 on average during the first experiment 
with expected loss due to occlusion and occasional misidentified 
robots due to reflections (section S2.2). Despite this, the behavior is 
robust and repeatable and allows for effective changes between low 
and high densities. In addition, idealized point-mass simulations 
indicate that the resultant average distance between robots grows 
linearly with the prescribed target distance dt and sublinearly with 
the number of robots, which shows that fine control over the spread 
of a robot collective via dt is theoretically possible (section S2.3).

Dynamic circle formation and milling based on binary 
sensing of neighbor presence
Milling is an impressive dynamic formation commonly observed in 
fish schools when evading predators (Fig. 5A) (3, 5), where the whole 
school coherently swims in a clockwise or counterclockwise circular 
formation, often forming large 3D funnel or ball-like shapes. Theo-
retical models of fish schools suggest that milling may be achieved 
as a special case of flocking (19, 20, 67–69), through a delicate balance 
between parameters for alignment and attraction-repulsion or through 
radially asymmetric attraction-repulsion. Currently, however, such 
self-organized dynamics formations have not been implemented in 
physical robots. Experimental studies with flocking in ground and 
aerial robots (30, 59) suggest that detecting the alignment of neigh-
bors is more challenging and noisy than determining position and 
bearing, and in both cases, alignment matching is achieved by robots 
explicitly exchanging messages with global heading information 
rather than local perception. Even in the alignment-free form (20), 
the system parameters need to be carefully tuned, although there is 
the potential for achieving many more dynamic formations. Currently, 
it is not fully understood how fish schools actually achieve milling 
(70), and several biological studies suggest that fish and birds may 
react to a limited number of neighbors rather than the whole neigh-
borhood (71, 72).

Recently, a new trend in swarm robotics has been the study of 
minimalist self-organization, using models inspired by physics and 
derived by evolutionary algorithms; this work has shown that un-
expectedly complex behaviors such as aggregation, clustering, and 
collective transport can be achieved by agents with extremely simple 
neighborhood sensing (e.g., binary sensing of presence or absence 
of neighbors or analog sensing of the amount of neighbors) (73–75). 
In one such study, a behavioral rule for milling-like formations was 
found through evolutionary means by one of our authors (25). In-
stead of reacting separately to each visible neighbor, this rule relies 
only on a single binary source of information that indicates whether 
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at least one other robot is within the line of sight. The rule takes the 
form of a memoryless mapping from each of the two possible cases 
onto a predefined locomotion pattern: in this case, turning slightly 
right if no one is visible and turning slightly left if any robot is visi-
ble. For many values of turning radii, robots spontaneously aggre-
gate (25). However, for some parameters, emergent circle formation 
was observed, where robots spread equidistantly in a circle and ro-
tated indefinitely. This emergent circle formation behavior was 
demonstrated in a simulation for 2D ground-based robots under the 
assumption of zero inertia but so far remains unvalidated on physi-
cal robots.

Here, we demonstrate self-organized milling, or dynamic circle 
formation behavior, for 3D underwater robots based on this mini-
malist formulation of milling. Instead of a line-of-sight sensor, our 
behavior rule uses a 3D triangular prism with nonzero opening 
angle 2 (Fig. 5B). We prove that for idealized robots, the radius R 
of the emergent dynamic circle is (Materials and Methods)

    R =  / (cos − cos (     2 ─ N   −  )  )    (3)

where N is the number of participating robots with approximately 
circular bodies of radius . This equation suggests that the more 
robots present, the larger the circle radius R. Note that all robots 
have the same fixed turning radius r0 ≤ R, but the actual radius R of 
the circle emerges as a function of the number of interacting robots 
and does not depend directly on turning radii; in section S3, we 
discuss parameter limits. Larger circles can also result from larger 
viewing angles  and body sizes , which cause robots to see each 
other more easily (Materials and Methods). However, this theoreti-
cal result (Eq. 3) assumes idealized robot dynamics and does not 
include movement constraints or inertia, making experimental val-
idation an important step. To test dynamic circle formation on the 
Bluebots, we chose  = /12 so that a circle with all seven robots would 
fit within our tank. Each Bluebot used a precomputed mask on both 
cameras that returned a binary value based on whether at least one 
robot was within the specified field of view. The Bluebot then moved 
clockwise or counterclockwise depending on its sensor reading, 
which was achieved by actuating the caudal fin in conjunction 
with a pectoral fin, such that the ratio of frequencies determines the 
turning radius.

Fig. 5. Self-organized dynamic circle formation. (A) A school of barracudas milling. (B) Dynamic circle formation with binary sensors: A robot turns clockwise if no other 
robots are present within a predefined segment view (orange) and counterclockwise if at least one robot is present (blue). The emergent circle radius R is determined by 
the angle of view  and the number of robots N with approximately circular bodies of radius  (Eq. 3). (C) Dynamic circle formation on Blueswarm (arrows indicate robot 
headings). (D to F) Experimental data from 3D dynamic circle formation with seven Bluebots, where each Bluebot maintains a preferred depth, resulting in a cylindrical 
shape: (D) trajectories of all robots, (E) distances to centroid of all robots (colors) and their mean (black, dashed), and (F) depths of all robots. (G) Addition and removal of 
robots during a continuous 2D experiment, demonstrating robustness of the formation process and emergent adjustment of circle radius R to the number of robots N.
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We tested dynamic circle formation and maintenance with seven 
Bluebots; all of them spread out on the water surface randomly at 
initialization (Fig. 5, C to F, and movie S4). In our first experiment, 
we also preprogrammed each robot to dive to a different preferred 
depth such that the dynamic formation is 3D, forming a rotating 
cylinder similar to some natural observations of milling. Tracked 
3D trajectories are shown in Fig. 5D. The Bluebots were able to 
form and maintain the dynamic circle formation for several minutes 
at a time, limited, in part, by collisions with the tank boundary. While 
rotating, the Bluebots could maintain a radius accuracy of under 
20% and a depth accuracy of within 5% (Fig. 5, E and F). Unlike 
simulated or 2D ground robots, the Bluebots are subject to inertia 
and imperfect motion, and our results suggest that this minimalist 
rule is robust to the real-world dynamics. We also observed that the 
collective was often able to recover from collisions with the tank, 
forming a new circle after a short time period. We investigated this 
robustness further with a second experiment, where we manually re-
moved and added robots at different times to form circles with five 
to seven robots at the same depth (Fig.  5G and movie S4). The 
robots were able to reform the dynamic circle after each perturba-
tion in less than 30 s, even in the face of interrobot collisions. The 
experiment also confirmed that the radius R of the emergent circle 
varies with the number of robots N, yielding radii R of 234, 357, and 
489 mm for N of 5, 6, and 7, respectively, that are close to the predic-
tions from Eq. 3, i.e., 190, 309, and 496 mm.

Overall, our experiments show that we can achieve milling-like 
dynamic formations using this simple emergent behavioral rule. 
The presence of substantial inertia in an underwater setting does not pre-
vent circle formation; however, the instantaneous formation at any 
given time is qualitatively less regular than previous simulations of 
inertia- free ground robots (25). Our success with emergent milling 
formations on physical robots illustrates the opportunity for new 
forms of implicit coordination algorithms, more similar to synchro-
nization than dispersion, in that an individual agent does not need to 
explicitly detect and react to all neighbors but rather reacts anony-
mously or to some simple summary statistic about the neighborhood 
(e.g., presence/absence, amount, optic flow, etc.). This may enable 
more complex self-organization in real robots than previously possible.

Multibehavior collective search with transitions between 
search, gather, and alert
In our final demonstration of decentralized complexity, we com-
bine multiple behaviors to achieve a collective search operation. In 
fish, robot, or even human collectives, the work of scanning sur-
roundings can be shared among the constituent individuals, poten-
tially reducing the burden on each individual while achieving a 
higher level of collective vigilance. Schooling fish, for instance, find 
food faster as group size increases (6), and each fish can devote more 
time to feeding because all others are also watching for predators 
(7, 8). Swarms of underwater robots may also exploit this “many 
eyes” effect for collective sampling of oceanic data, mapping of plumes 
in coastal waters (35, 36), or faster search and rescue missions in 
collaboration with ocean surface and aerial robots (38, 76). Because 
a search operation may involve several subtasks, it is also a motiva-
tional example for swarm programmability, where multiple collec-
tive behaviors must be sequenced together (77, 78).

In our search experiment, seven Bluebots were placed at the cen-
ter of the water surface and tasked to search for a red-light source in 
a bottom corner of the tank (Fig. 6, A to E, and movie S5). To achieve 

this task, we combine three behaviors—search, alert, and gather—
using flashing LEDs as a visual signal to initiate behavioral transi-
tions (Fig. 6F). As a first step, the robots used the dispersion behavior 
described earlier to collectively search by spreading out in the tank 
(with dt = ∞ for unbounded dispersion). The first Bluebot to detect 
the red-light source (i.e., within a range of about 3 BL) switched to 
alert behavior, where it holds its position and flashes its LEDs at 15 Hz 
as a signal to recruit others. As other robots observed the flashing 
signal, they switched off their LEDs and moved toward the signal 
(gather behavior). Once they were close to the red-light source, they 
also started to flash, thereby reinforcing the alert signal (Fig. 6). Im-
plementation details on detection of the red-light source and LED 
flashings are in Materials and Methods.

This search experiment demonstrates the ability to design com-
posite behaviors using signaling as a simple visual communication 
method, combining both implicit collective behavior and simple 
explicit state signaling, which allows a leaderless group to work to-
gether efficiently on a complex task. The gather behavior mimics the 
recruitment seen in natural collectives, for example, ants recruiting 
to collectively transport large bait or bees recruiting to high-value 
food sources (1). A recent study suggests that flashlight fish may use 
bioluminescent flashing to signal during nighttime schooling (46). 
For a single robot searching alone, expected red-light source detec-
tion time theoretically increases to 1024 s (Materials and Methods). 
Blueswarm completed the search operation efficiently, with all ro-
bots able to detect the source within ~90 s, getting notable results 
from their collaboration (Fig. 6E and movie S5).

DISCUSSION
Our results with Blueswarm represent an important advance in the 
experimental investigation of underwater 3D self-organized collec-
tive behaviors. In all the demonstrated behaviors, Bluebots solely relied 
on local visual information, which is acquired and processed on-
board in real time and 3D but imperfect motion using low-cost fin 
actuators. However, Blueswarm is able to achieve multiple 3D col-
lective behaviors by exploiting biologically inspired coordination 
techniques that are inherently robust to imperfect knowledge and 
that enable the emergence of complex and dynamic global behaviors 
from seemingly simple interactions. We demonstrated well-studied 
classic collective behaviors such as synchronization and dispersion, 
introduced dynamic behaviors such as milling, and programmed 
complex tasks by connecting multiple behaviors (movie S6). By 
focusing on a minimalist form of visual coordination, we were 
able to achieve versatility and demonstrate programmability for an 
underwater robot swarm.

This work on the design and validation of these autonomous ro-
bots with 3D perception and 3D locomotion represents an example 
of fully decentralized 3D underwater coordination using implicit local 
coordination and no external centralized sensing or control assistance. 
The Bluebot cameras paired with the LEDs result in a minimalist 
but versatile visual system that can be used to quickly infer the posi-
tions of neighboring robots but also allow synchronization and signal-
ing. Future designs may use deep learning–generated visual patterns 
(i.e., “artificial” schooling marks) instead of LEDs to recognize 
neighbor pose (79). The fish-inspired body design with multiple fins 
offers a high degree of maneuverability at a low footprint to enable 
fast response to neighbor actions or precise maneuvers in more 
complex environments. Although the Bluebot platform is currently 
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limited to a laboratory setting, the introduction of progressively 
more powerful and smaller microcomputers, underwater cameras, 
and new actuators will enable such robots in more complex natural 
environments (36, 40). Blueswarm was particularly inspired by 
schooling fish, such as surgeonfish and damselfish, that form highly 
agile coordinated schools in complex and visually rich environments 
such as coral reefs (48, 49). With the rapid improvement in camera 
technology, we envision underwater visual coordination to be effec-
tive in environments where fish use vision as their dominant sensing 
modality. Future camera-equipped miniature underwater robots may 
additionally record videos and take images, for instance, to inspect cor-
al reefs or man-made underwater structures.

Environments less amenable to vision, such as turbid waters, may 
require a recomposed suite of sensors, e.g., inspired by fish lateral 
lines; harsher environments like the open ocean may be explored with a 
larger and more powerful robot and other options like acoustic sensing. 
Nevertheless, these systems can still take advantage of implicit coor-
dination algorithms and will face similar robustness challenges due to 
physical movement and local perception constraints. Blueswarm 
enables physically validated studies of algorithmic robustness and 
scalability that will uncover important gaps in our theoretical under-
standing. Bluebots are also well suited as an experimental test bed for 
investigating natural collective behaviors and biomimicry, for ex-
ample, studying dynamic evasive maneuvers or energy savings for 

different formations in schooling fish or 
collective predator behaviors exhibited 
by wolf packs or dolphins (1, 5, 20). Im-
plicit coordination is a compelling ap-
proach to scalable and robust swarming 
because it not only is naturally decentral-
ized and robust to individual failures 
but also reduces communication com-
plexity in environments where direct ex-
plicit message passing is not possible or 
not desired. Insights from real-robot 
underwater experiments will contribute 
toward future unsupervised versions of 
coordinated maneuvers of unmanned 
vehicles, making it possible to combine 
multiple robot modalities (aerial, water 
surface, and underwater) to achieve 
scalable and robust realizations of ven-
tures such as collective search of missing 
aircrafts, vessels, and persons in water (76).

MATERIALS AND METHODS
Experimental setup and testing 
routines
All experiments were conducted in a 
fresh water tank with dimensions of 
1.78 m by 1.78 m by 1.17 m (51), which 
had a depth of 0.91 m (effectively, 13.7 BL 
by 13.7 BL by 9.0 BL). Most experi-
ments are under 10 min in length; the 
robots have a top speed of 1.15 BL/s and 
are able to cross the surface of the tank 
in about 11.9 s. A digital single-lens 
reflex camera was mounted above the 

tank to film experiments and allow for planar tracking of individual 
robots (fig. S18). Experimental data including diving depth values 
along the vertical dimension were acquired onboard the robots. The 
reconstruction of 3D robot trajectories was possible from video 
materials and depth values and validated in previous research (51). 
A custom-built software automates large parts of this reconstruction, 
only asking for user intervention when there is potential for ambi-
guity. The software works by first tracking the video data for Blue-
bot positions using image processing techniques, then isolating the 
trajectories of individual robots, and lastly matching these trajec-
tories spatially and temporally with depth values from the Blue-
bots’ pressure sensors and fusing all the data to recreate individual 
3D trajectories.

Bluebot design
Bluebot’s functional design consists of three major modules: (i) Two 
cameras allow for 3D perception of surroundings, (ii) two LEDs 
serve as active beacons for neighbor recognition, and (iii) four inde-
pendently controllable fins provide a high degree of maneuverability 
in 3D space.

1) The 195° wide-angle lenses (Arducam) of the cameras (Raspberry 
Pi Camera Module v2) penetrate the body on either lateral side and 
are angled 10° forward against the y axis. Thermoformed hemispheres 
made of clear plastic (Curbell Plastics PETG, 0.5 mm in thickness) 

Fig. 6. Search operation composed from multiple behaviors. (A to D) Experimental validation: (A) Seven Bluebots 
were deployed centrally and searched for a red-light source at the left bottom corner of the tank. Robots switch be-
tween three behaviors: search, gather, and alert, indicated by blue, green, and yellow, respectively, in figure dia-
grams. (B) Initially, the robots dispersed to cooperatively locate the source. The first robot detecting the source 
switched to alert behavior, maintaining position and flashing its LEDs (15 Hz). (C) Other robots close by the source 
also detected it and switched to alert. Further away, robots that had detected the flashing LEDs switched to gather, 
turning off their LEDs and moving toward the flashing robots. (D) The experiment concluded when all robots had 
found the red-light source. (E) The timing of events shows the cascade of information spreading. The first robot de-
tected the source after 20 s of controlled dispersion. Within 10 s, all other robots noticed its alert and started migrating 
toward the flashing LEDs. Incoming robots catching the light source started flashing as well to reinforce the alert 
signal. The source was surrounded by all robots after 90 s. (F) During search, all robots acted according to the same 
finite-state machine (nbr, neighbor).
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cover the lenses for waterproofing (Fig. 1A). On the inside, the camera 
cables are routed to a duplexer board (Arducam), which is then 
connected to the onboard computer (Raspberry Pi Zero W). One 
camera can be used at a time, and the duplexer board allows for 
superfast switching (~20 s).

2) The blue-light LEDs are mounted in prominent locations along 
the xz plane of Bluebot such that they are visible from almost any 
direction. The two posterior LEDs are always stacked vertically at a 
distance of 86 mm because Bluebot does not roll nor pitch (Fig. 1A). 
When detecting neighboring robots in camera images, custom- 
designed algorithms identify and assign LEDs to individual robots. 
An LED pair allows for the inference of direction and distance of a 
neighboring robot (Fig. 1, G to J).

3) In the horizontal xy plane, the caudal fin provides thrust in the 
forward direction along the x axis, and two pectoral fins produce 
near–on-the-spot turning. The pectoral fins are angled 30° forward 
against the y axis such that when run together, they provide thrust 
in the negative x direction and allow for stopping and backing up. 
Decoupled from planar motions are vertical ascent and decent. The 
robot itself is slightly positively buoyant such that it floats toward 
the surface unless the dorsal fin is actuated. The dorsal fin provides 
thrust along the z axis and allows for controlled diving (Fig. 1A).

Our current Bluebot design achieves 3D motion with a forward 
speed of 150 mm/s (equal to 1.15 BL/s), a diving speed of 75 mm/s, 
and turning at radii as small as 65 mm. Bluebot is able to process 
neighborhood images at the rate of about 2 Hz, which means that it 
can travel ~0.6 BL between observations.

All fins are powered by our custom electromagnetic actuators 
consisting of a coil inside which a permanent magnet is hinged (51). 
Oscillating the direction of an electric current flowing through the 
coil induces an oscillating magnetic field, with which the magnet 
tries to stay aligned. As a result, the fins oscillate around a single axis 
in a sinusoidal pitching motion (Fig. 1, E and F). The power of the 
fins can be controlled by changing the voltage across the coil with 
pulse width modulation. The actuators are submersible, and only 
two wires from each coil penetrate the Bluebot’s body, avoiding any 
need to seal off moving parts. The housings are 3D printed in assem-
bled state, i.e., including the pivoted hinge to which fins, laser-cut 
from flexible plastic shims (ARTUS), are attached. The caudal and 
the dorsal fins are equipped with two actuators each for enhanced thrust 
and connect magnetically to the robot body. The magnetic connection 
allows for fast switching between different fins, which can be used in 
future studies (e.g., on the propulsive efficiency of fin designs).

Bluebot is designed to be easy to manufacture, recharge, and 
program to facilitate multirobot operations. Up to 10 Bluebots can 
be put on a custom charging rig simultaneously. The robots have an 
onboard charging circuitry (LTC2954), and the rig is powered from 
a power supply at 10 V. Similarly, programming multiple robots with 
a single command is possible using the Wi-Fi module of the onboard 
computer (Raspberry Pi Zero W). To start programs (implemented 
in Python3) on multiple robots simultaneously, we use a light pulse, 
which is perceived by the robots’ forward-facing photodiodes 
(VTP1112H) and causes switching from an idle loop to the main 
program. Experimental data from the perspective of Bluebots can 
be logged onboard on a microSD card. We used, for instance, data 
from a pressure sensor (TE connectivity MS5803-02BA) to recon-
struct diving depths. All electronics are connected to a custom printed 
circuit board (PCB; OSH Park). A 7.4-V 950-mA·hour battery (Turnigy) 
provides power for run times of up to 2 hours, whereby the onboard 

voltage is reduced to 5 V by a step-down voltage regulator (Pololu 
D24V90F5). Bluebot is switched on and off with a custom ignition 
key that applies 3.7 V to two external pins, which are connected to 
an on/off controller (LTC2954). The controller also automatically 
shuts down the robot if battery is low.

Assembling a Bluebot takes roughly 6 hours, which starts with the 
installation of all actuators, cameras, and electronics inside the two 
3D printed plastic halves (Stratasys PolyJet Objet500), continues with 
soldering all electronic components to the PCB and sealing those 
components that penetrate the body from the inside, and concludes 
with fusing the two halves into a single robot using plastic bonding 
epoxy (Loctite). Passive stability in roll and pitch and near-neutral 
buoyancy are achieved by careful placing of components such that 
the center of mass is directly below the center of buoyancy. A small 
compartment on the ventral side of Bluebot, which is sealed from 
the rest of the body and opened with a single bolt, allows for fine 
tuning of buoyancy with additional mass blocks. A Bluebot figure 
with all components labeled is shown in section S1.1.

Visual underwater navigation
The Bluebot's vision system is composed of two cameras, which are 
capable of capturing still images at a resolution of up to 2592 pixels 
by 1944 pixels. However, in most cases, the images are downscaled 
to a resolution of 256 pixels by 192 pixels to allow for faster image 
processing and shorter control cycles. Captured images are in red-
green-blue color, but because the points of interest are Bluebot LEDs, 
which are blue, only the blue channel gets used in image processing 
(except in red-light detection in the search experiments). The camera 
settings (brightness, contrast, and white balance gains) are tuned such 
that under experimental lighting conditions, only the bright Bluebot 
LEDs register substantially in the images; everything else appears 
mostly black (Fig. 1J).

LEDs appear as quasi-circular blobs in the images. These blobs 
are identified using a custom-designed algorithm, which is described 
here briefly and in more detail in section S1.2.2. First, each image 
undergoes thresholding to convert it to a binary image. Then, blob 
detection proceeds by searching for continuity in white pixels in the 
horizontal and vertical directions. Groups of white pixels that are 
continuous in both directions become designated as blobs. This 
algorithm, on average, requires 2.9 times fewer computational steps 
than more conventional algorithms (e.g., depth or breadth-first search) 
and is faster by roughly one order of magnitude on the Bluebot's 
Raspberry Pi Zero W processor (see section S1.2.2 for a time complexity 
analysis). The notable speedup comes at the cost of susceptibility to some 
pathological cases where discontinuous groups of white pixels get 
lumped together as one blob; however, these pathological cases ap-
pear very rarely in practice.

The wide field of view provided by the lenses results in substantial 
spherical distortion in the images. Thus, an undistortion function is 
essential to convert blob locations in images to directions in the real 
world. We obtained this undistortion function using open-source 
software for omnidirectional camera calibration (OCamCalib Toolbox 
for MATLAB).

A typical image from a Bluebot's camera contains several 
blobs because multiple other Bluebots are within the field of view. 
Moreover, reflections may appear if these Bluebots are close to 
the water surface. For obtaining information about the number of 
Bluebots or their distances, it is necessary to eliminate reflections 
and to identify pairs of blobs originating from the same Bluebot. 
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The process of pairing blobs relies on the fact that Bluebots are 
passively stable in roll and pitch, and therefore, their two LEDs are 
always vertically aligned. When a pair of blobs originating from the 
same Bluebot is available, it is possible to estimate the distance to 
that Bluebot via projective geometry (see section S1.2.5 for details). 
This calculation makes use of the known directions to both LEDs 
in the world (obtained from applying the undistortion function 
to the blob locations) and the vertical distance between the LEDs 
(fixed at 86 mm).

Lennard-Jones potential function for controlled dispersion
During dispersion, Bluebots calculate next moves on the basis of the 
weighted average of all force contributions from neighboring robots 
(Eq. 2 and Fig. 4B). Such individual forces, derived from the Lennard- 
Jones potential, are repulsive (<<0) if robots are closer than a target 
distance dt and attractive (>0) otherwise (Fig. 4C). The individual 
force magnitudes scale nonlinearly with distance between robots with 
an emphasis on nearby neighbors that exert extreme repulsive forces 
to avoid collisions or substantial attractive forces to maintain cohe-
sion. The stronger the final averaged force, the higher the oscillation 
frequencies of the actuated fins to swim toward the corresponding 
direction.

Bluebots move continuously to minimize the average of all 
forces, thereby achieving dispersion with controllable density. 
The robots are not, however, moving into particular and stable 
formations. NNDs, a metric for the spacing of robots, are gener-
ally lower-bounded by dt because repulsive forces outweigh attrac-
tive forces.

Dynamic circle formation
Here, we provide a simplified model overview to derive the radius 
of the dynamic circle formation; a more detailed model with explic-
it bounds on all parameter values is presented in section S3. Assume 
that we are given a number of robots N, with an approximately cir-
cular body of radius  and with a binary sensor whose field of view 
is defined by the half-angle  in the plane and not restricted in the 
vertical dimension. We can compute a formula for the size of a 
“perfect” circle (Fig. 7A), where each robot is placed equidistant 
along a circle, oriented in a clockwise direction such that each robot’s 
field of view is empty but just on the edge of detecting the robot in 

front of it. In this configuration, each robot’s binary sensor will de-
tect a zero, and the robot will turn clockwise on the next time step. 
If we consider two adjacent robots and the triangle formed between 
them (Fig. 7B), then we can use trigonometry to derive the formula 
for the radius of this perfect circle. In the uppermost triangle in 
Fig. 7B, we have

  tan  =   R − R cos  −  cos   ───────────   R sin  +  sin      

which can be rearranged to give

  R =      ──────────────   cos  − cos  cos  − sin  sin     

By simplifying the denominator using trigonometric identities 
and noting that  = 2/N for equidistant robots, we obtain Eq. 3 in 
the main text

  R =    ───────────  
cos  − cos (    2 _ N   −  )  

    

Given N robots in a perfect circle, we can show that this circle 
rotates stably under certain assumptions. Full proofs and assumptions 
are provided in section S3; here, we describe the intuition behind 
the stability. One key assumption is that the robots’ clockwise turn-
ing radius when the sensor reports no other robots, r0, must be 
smaller than or equal to the milling radius: r0 ≤ R. Intuitively, we 
can see that if the turning radius is perfect, i.e., r0 = R, then all the 
robots will simply rotate in that circle without ever being perturbed; 
milling is smoothest if the two values are similar. If r0 is less than R, 
then in the next step, each robot will rotate slightly into the circle 
and immediately observe their front neighbor intersect their field of 
view. This will cause an immediate response to rotate counterclock-
wise, once again putting them in the perfect circle. In addition to 
bounds on turning radii, there are also bounds on , , and response 
times, which are theoretically derived in section S3.

In our setting with a maximum of seven robots, we chose  to be 
/12, which results in an expected circle radius of 496 mm (tank 
planar dimension is 1.78 m by 1.78 m). We tuned pectoral fin 

Fig. 7. Dynamic circle formation geometries. (A) A regular polygon configuration with field-of-view sensors. Only two robots are shown for simplicity; additional robots 
lie on each vertex of the polygon. (B) Geometry for calculating the milling radius R with field-of-view sensors (, interrobot distance). (C) Scaling intuition based on Eq. 3 
for circle radii R with nominal parameters (blue) and doubling of robots N (red), robot size  (yellow), and viewing angle  (purple), respectively.
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actuation frequencies to 6 Hz for clockwise and counterclockwise 
turning and ran the caudal fin at 3 Hz to swim such circles. Experi-
ments during which robots drifted and bumped into the tank walls 
were discarded and repeated.

Search operation
This composite behavior introduces signaling, where a robot flashes 
its LEDs at 15 Hz and other robots detect that a robot is flashing. 
Flash detection is achieved by an algorithm that is designed and 
tuned to be robust to noise and robot motion. The Bluebot captures 
a rapid sequence of 30 images (in about 0.5 s) from each of its cam-
eras. The two sequences of images are analyzed separately for the 
presence of flashes. The flash detection algorithm proceeds in three 
phases. First, blob identification is performed on each image in the 
sequence. Second, outlier blobs are identified between each two 
successive images. Outliers are blobs that appear in some location 
in the first image and are not present in the second anywhere within 
a small radius of that location. Third, streaks of outliers are identi-
fied. A streak is a sequence of outliers such that each outlier occurs 
within a small radius of the previous one. A flash detection is de-
clared if a streak is sufficiently long. The threshold radii for outlier 
and streak detection and the minimum streak length for a flash de-
tection were tuned empirically in the tank under experimental con-
ditions to give a good balance between reliably identifying flashes 
and minimizing false-positive errors.

In addition, the robots also must detect a target that emits red 
light. This detection was tuned to restrict the detection radius to be 
small (within 3 BL) so that robots would need to search the tank 
before finding the target. Red-light source detection works by com-
paring the red and blue channels of the image. For source detection, 
blob identification is performed not on the blue channel of the im-
age, but on the average of the channels (i.e., a grayscale version of 
the image). After blob identification is performed, every blob larger 
than two pixels is considered a candidate to be the source. Blobs 
that are smaller are not considered to avoid noise and to make sure 
that Bluebots can only detect the source when they are sufficiently 
close to it. For each candidate blob, the blue and red values of all the 
pixels within a Chebyshev distance of two of the blob’s centroid 
are summed up separately, and the ratio of the red total to the blue 
total is calculated. A blob is considered to be red (i.e., the source) if 
this ratio is larger than 1.2.

The search operation exploits cooperativity to be efficient. We 
can approximate the expected time for red-light source detection if 
Bluebots do not collaborate by using a Markov chain to model a 
random walk at an average speed of 0.5 BL/s on an undirected graph 
G. The vertices of G are the integers 0, …, n and represent distance 
to the red-light source. The source is at vertex n = 40, the center of 
the water surface (initial Bluebot location) at vertex j = 24, and the 
furthest location to the source at vertex 0. For 1 ≤ i ≤ n − 1, vertex i 
is connected to vertex i − 1 and vertex i + 1 at a distance of 0.5 BL 
(41 × 0.5 BL = 20.5 BL ≡ tank diagonal). In each 1-s-long time step, 
a robot is assumed to move toward or away from the source with 
equal probability. The expected time to find the source is (n2 − j2) s = 
1024 s (proof using linearity of expectations in section S4.1, cf. run-
time of the randomized algorithm for 2-SAT). Although a random 
walk is not the most efficient search pattern for an unknown space, 
our Bluebots are simple robots that so far lack the sensing/motion 
complexity necessary for more sophisticated methods (e.g., simul-
taneous localization and mapping).
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