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Abstract. The remoteness and hazards that are inherent to the oper-
ating environments of space infrastructures promote their need for au-
tomated robotic inspection. In particular, micrometeoroid and orbital
debris impact and structural fatigue are common sources of damage to
spacecraft hulls. Vibration sensing has been used to detect structural
damage in spacecraft hulls as well as in structural health monitoring
practices in industry by deploying static sensors. In this paper, we pro-
pose using a swarm of miniaturized vibration-sensing mobile robots re-
alizing a network of mobile sensors. We present a distributed inspection
algorithm based on the bio-inspired particle swarm optimization and evo-
lutionary algorithm niching techniques to deliver the task of enumeration
and localization of an a priori unknown number of vibration sources on a
simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm
of simulated cm-scale wheeled robots. These are guided in their inspec-
tion task by sensing vibrations arising from failure points on the surface
which are detected by on-board accelerometers. We study three perfor-
mance metrics: (1) proximity of the localized sources to the ground truth
locations, (2) time to localize each source, and (3) time to finish the in-
spection task given a 75% inspection coverage threshold. We find that
our swarm is able to successfully localize the present sources accurately
and complete the predefined inspection coverage threshold.

1 Introduction

Many industries, such as agriculture, bridge and wind turbine maintenance, and
space exploration are actively investing in robotic inspection [8–10, 24]. The over-
arching goal is to reduce the risk, cost, and service downtime by supporting hu-
man inspection. Deploying robots becomes particularly useful when inspection
must be carried out in dangerous conditions or over extended periods of time. In
particular, long-term space infrastructure deployments will benefit from robotic
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inspection [3]. Across a long deployment time, damages caused by structural
fatigue and micrometeoroid and orbital debris (MMOD) become non-negligible
[16]. Identifying and mending such damages before they become a source of ma-
jor structural failure is critical. As an example, the International Space Station
(ISS) has now been in operation for over two decades. As the structure ages, fail-
ures arise [16, 1]. In the near future, this could also apply to the Lunar Gateway
space station and the lunar surface Base Camp of NASA’s Artemis program.
Regular inspection is instrumental to extending lifetime of such deployments.

Vibration sensing and analysis methods are widely used in structural health
monitoring [30, 33]. In aerospace applications, in particular, the accelerometer-
based Wing Leading Edge Impact Detection System (WLEIDS) was set up and
flown on all shuttle flights after the 2003 fatal accident of the Columbia space
shuttle. Currently, more than 80 accelerometers are in operation on the ISS for
structural dynamics monitoring [33]. The underlying theoretical methods for
vibration analysis are based on the vibration response or modal analysis of an
a priori known structure [13, 6]. The signal processing and failure identification
methods depend on the specific target systems [38]. Standard practices typically
involve deployment of a large set of static sensors with fixed sampling rates [15].

An automated inspection task may be performed by using a network of static
sensors (deployed pre- or post-construction) or a single mobile robot (deployed
post-construction). There are, however, multiple benefits in using a swarm of
mobile robots. Swarms are known for their resilience to failure of individual units.
Compared to fixed sensor networks, used in many environmental monitoring
applications, robot swarms provide dynamic and flexible coverage performances
[7]. Minimizing the complexity and cost of the individual robotic units is required
for achieving low-cost swarm operations. This drive for simplicity has been the
motivation behind employing bio-inspired algorithms and miniaturized robots.

An automated inspection task can be formulated based on the well-studied
source localization task [21, 23, 11], that involves three components: (i) finding
a cue, (ii) tracing the cue to a source location, and (iii) confirming a localized
source. We formulate our inspection task as a repetition of a source localization
task until a termination condition is reached. This requires two high-level search
behaviors: a local search behavior to localize a new source in the search space
and a global search behavior to maximize exploration and coverage of the search
space. In what follows, we briefly review the literature for both search behav-
iors. Global search methods aim to maximize coverage through (i) a random
or (ii) a systematic exploration of the search space. Lévy flights and Brownian
motion random walks explore a search space randomly [36, 27, 28]. The basic
lawnmower problem in an unobstructed environment and the traveling sales-
man problem are examples of systematic exploration methods. Being NP-hard
[5, 4], there is no guaranteed way to determine the optimal solution to these
problems in order to cover the search space, however, near optimal solutions are
possible [20]. Local search methods aim to localize a source [19]. Three main
categories of these search methods can be identified: (i) reactive, (ii) heuristic
cognitive, and (iii) probabilistic cognitive methods. Reactive search methods,
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such as gradient-based and bug algorithms, guide the search by relying solely
on the latest observations made by the robots. These methods are typically sim-
ple and require little memory and computational resources [34, 31, 37], but have
been shown to perform poorly in complex search scenarios [11, 21]. Cognitive
methods combine incoming observations with previously gathered information
to guide the search [19]. Heuristic cognitive search methods see the source
localization problem as an optimization problem. The objective function to be
optimized can, in the case of an odor source localization problem for instance,
be the gas concentration sensed by the robots [19]. Heuristic methods typically
lend themselves well to multi-robot search scenarios [19]; by design, their mathe-
matical optimization counterparts deploy multiple agents as candidate solutions
that explore the search space. The most known bio-inspired example of heuris-
tic optimization methods are the Particle Swarm Optimization (PSO) [14] and
the Cuckoo Search (CS) [39]. PSO-based multi-robot search has been studied
in [32, 18]. Probabilistic cognitive search methods use probabilistic inference
to derive the distribution of the cue in the search space [19, 37]. This derivation
requires a known dispersion model for any given cue and environment [19] and is
often based on the Bayesian inference framework, such as Hidden Markov Models
(HMMs) [29] and Particle Filters (PFs) [22]. Another example in this category is
infotaxis, which uses an entropy-reduction principle [35]. Probabilistic cognitive
search methods are applicable only as long as their underlying model assump-
tions hold and accurate cue dispersion models are available; for this reason, these
methods remain less applicable to localizing failure sources using vibration cues.

We believe that small-scale vibration-sensing robot swarms have a great po-
tential for a variety of structural health monitoring tasks. In this work, we con-
tribute towards realizing such potential by presenting a simulation and algorith-
mic framework that enables a simulated swarm of miniaturized robots to inspect
simplified spacecraft hull surface models. To the best of our knowledge, our work
is the first to propose and demonstrate the utility of vibration-sensing surface-
inspecting robot swarms. We plan to conduct and present real robot experiments
in future works. In this work, we contribute and combine two main elements:

– Localizing an a priori unknown number of failure sources: Unlike
source localization, in inspection tasks the number of failure sources is a
priori unknown. We address this by employing a PSO-based heuristic local
search as well as a coverage maximizing Lévy random walk global search.

– Using vibration sensing for localizing the failure sources: Compared
to odor sensing paradigms, vibration sensing remains under-addressed in
autonomous inspecting robot swarms. We employ a realistically modeled
vibration signal (ANSYS software) on simplified spacecraft surface sections.

2 Problem Statement

We formally define the inspection task that we set out to undertake as the
repeated localization of any multitude of failure sources on a 2.5D (a 2D curved)
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(a) Simulated robot (b) Real robot (c) Simulated robot (d) Real robot

Fig. 1: We use a realistic model of the Rovable robot in our simulation experi-
ments. The real Rovable robot (b,d) and its simulation model created in Webots
(a,c) have similar physical properties. For scale, each wheel is 12mm in diameter.

surface in orbit, using a swarm of robots that sense the vibration signal as a cue,
until a termination condition based on the overall surface coverage level is met.

A failure source is then defined as a feature that disturbs the normal function-
ing of a system. Detecting a failure source requires knowledge of the functional
state of the system. We hypothesize that failure sources such as cracks and fis-
sures on the surface result in creation of specific vibration signal profiles that
are detectable in the presence of endemic or induced vibration energy [2]. In
our modeling of the failure sources, we further simplify the points of mechanical
failure as sources of induced vibration applying force to the surface following a
sinusoidal pattern at a frequency of 1Hz, which falls within the mid-frequency
range of the vibratory regime of the ISS [25]. The amplitude of the sinusoidal
load, set to 1N, is chosen such that the resulting acceleration values are within
the ISS acceleration spectrum ranging from below a micro-g to 10 milli-g [25].
The cue is then the acceleration signal that is sensed during the inspection task.

3 Simulation Framework

Our simulation framework serves as the virtual environment in which we de-
ploy and study our inspecting robot swarm. Two main software components are
used: the ANSYS software, which we use for creating realistic vibration signals
propagating on a surface that models a shell structure in orbit, and the Webots
robotic simulator [26], which we use for simulating the operation of our robots.

Within Webots, we have three main components: (i) a realistic robot model
of a 3-cm sized 4-wheeled robot with magnetic wheels, (ii) ferromagnetic target
surfaces that the robots traverse to inspect, and (iii) a (supervisor controller)
script that passes on the vibration data to the robots, emulating the function
of a black box that contains an acceleration sensor and a processing unit that
returns the maximum observed acceleration amplitude. The robot model shown
in Fig. 1 is based on the Rovable robot. Originally designed as a mobile wearable
robot, Rovables can sense acceleration using their on-board IMUs [12]. Rovables
are capable of wireless communication and low-power localization using their
wheel encoders and on-board IMUs for inertial-based navigation. The robots
are able to carry loads of 1.5N and can adhere to ferromagnetic surfaces using
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Total Acceleration
(mm/s2)

0.47345

0.11937

0.41443
0.35542
0.29641
0.23740
0.17839

0.06036

0.53246 (max)

0.0013497 (min)

Total Deformation
(mm)

0.011959

0.0030045

0.010467
0.0089741
0.0074817
0.0059893
0.0044969

0.001512

0.013451 (max)

0.00019616 (min)

Fig. 2: We use a cylindrical surface of 4m length in ANSYS to model a sim-
plified spacecraft hull and empirically tune the elastic support parameter to
10−4N/mm3 and the load case amplitude to 1N to mimic the vibration regime
of the ISS [25]. Vibration propagation is strongly biased along the axial length.

their magnetic pincher-wheels. A newer version of the robot is equipped with a
vertically-mounted linear actuator for inducing vibrations, which could poten-
tially be utilized as an alternative to using endemic vibrations energy. All basic
operations of Rovables have been tested in zero gravity conditions in multiple
real-life parabolic flights. In this paper, we study the zero gravity conditions in
simulation. Within Webots, the Rovable proto file captures the physical proper-
ties of the real robot, such as mass, center of mass, and surface contact properties.

The simulated Rovables are additionally assumed to have knowledge of the
map of the environment as well as their own locations on the map using a
global positioning sensor. Knowledge of the map is a realistic assumption because
spacecraft hulls are routinely modeled in extensive detail. A loss-free infinite-
range communication channel is also assumed between the robots. The robots
share their locations on the map and use this information for collision avoidance.

Within ANSYS, we use the Transient Analysis to subject the surface model
to a sinusoidal load case of 1N at 1Hz representing a vibration source. To rep-
resent the placement of the surface model in orbit, we use an elastic support
boundary condition that involves the notion of foundation stiffness expressed
in N/mm3. This is typically used to model soil supported or submersed struc-
tures. We empirically set the foundation stiffness parameter to 10−4N/mm3 by
running a series of simulations and evaluating the results in discussion with a
human expert. The resulting deformation amplitude for the applied load case
is 13µm. Fig. 2 shows the surface model used for the empirical calibrations.
In order to reduce the computational cost of the data processing and export
pipeline, we create data files that approximate the time-dependent acceleration
data obtained from ANSYS with 2D Gaussian distributions that represent the
amplitude of the acceleration data on the surface. This data is then retrieved by
the (supervisor controller) script in our Webots simulation and is passed to the
simulated robots according to their location at each simulation step.
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Algorithm 1 Inspection Algorithm Overview
1: run Lévy Random Walk (RW) ▷ Initialize
2: while coverage < 75% do
3: if robot in collision then ▷ Collision avoidance
4: run Collision Avoidance (CA)
5: else if cue picked up or recruited into niche then ▷ Local search
6: run Particle Swarm Optimization (PSO)
7: if cue is a source then ▷ Source confirmation
8: declare source
9: run Directed Walk (DW) ▷ Re-initialization

10: return to Lévy Random Walk (RW)
11: end if
12: else
13: run Lévy Random Walk (RW) ▷ Global search
14: end if
15: update coverage ▷ Update coverage
16: end while

4 Proposed Algorithm

The overall structure of our inspection algorithm is shown in Algorithm 1. We
use a multi-modal variation of the PSO algorithm that takes advantage of a niche
formation behavior to allow parallel search for multiple sources as our local search
strategy combined with a random walk approach as our global search strategy.
Formation of niches happens simultaneously as the robots switch from global to
local search upon sensing a cue. We do not consider merging of the niches, if
robots from two niches come close they repel each other. There are four main
control states in the algorithm, which we explain briefly in this paragraph and
in more detail in the following ones. In the absence of any prior sensing of a cue,
the robots start in the Random Walk (RW) state, performing an unbiased Lévy
random walk around the environment until they sense a cue. Upon sensing a
cue, the robot will start performing a biased random walk in the Particle Swarm
Optimization (PSO) state while simultaneously forming a niche by recruiting a
second robot for a second opinion on the source location. Once a robot is finished
localizing a source, it starts in the Directed Walk (DW) state and moves to an
unexplored area in the environment and the niche is dismantled. The robot will
execute the Collision Avoidance (CA) state at any point in time if it is closer than
a threshold distance to a static obstacle or moving robot in the environment.

For each particle i, dimension j, and time step t, the PSO velocity update is:

vt
ij = ω ∗ vt−1

ij
+ c1 ∗ rnd()t ×

(
pbestij

− xt−1
ij

)
+ c2 ∗ rnd()t ×

(
gbestij

− xt−1
ij

)
(1)

where pbest and gbest are respectively the positions of the best values observed
by the individual i and the corresponding niche. The inertia term ω = 0.15, c1 =
0.35, and c2 = 0.5 are weights that balance exploration and exploitation in the
search space. The niche formation behavior is part of the local search behavior
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and allows for confirming an identified source location. Here, we consider niches
of size 2. In particular, once a robot is in the vicinity of a source and starts
the PSO state, it engages in niche formation by recruiting its nearest neighbor
within a maximum range of 1m. The recruited robot then starts in PSO state.

After localizing a source, a robot engages in a directed walk behavior, mov-
ing towards unexplored parts of the environment. This is achieved by using a
sliding window approach to identify the least covered areas and then performing
a roulette wheel sampling where the likelihood of selecting a less covered goal
position increases quadratically and inversely with surface coverage level there.
Upon localization, a source is marked on the coverage map as a circular obstacle
region with a radius determined by the range a cue was first perceived from by
an approaching robot, deterring the robots from the cue of a discovered source.

Collision avoidance is performed using the artificial potential field (APF)
method based on (i) a map of the environment in which the boundaries of the
arena and the obstacles are known and (ii) by communicating with other robots
to obtain their location on the map. Each obstacle contributes a repulsive term
to update a robot’s velocity. The repulsive term i in dimension j for robot r is:

vr
i,j = wi ×

(
1
dr
i

− 1
θi

)
×
(

xj−pi,j

(dr
i
)3

)
(2)

where di is the distance from the robot to obstacle i, xj is the robot’s position
in dimension j and pi,j is the closest point on obstacle i in dimension j. The
threshold θi is the distance to the obstacle i below which the robot will engage
in collision avoidance. The threshold and weight values depend on the obstacle.
There are three obstacle types: (i) static, which includes the arena boundaries
and the obstacles (w = 0.075m, θ = 5 × 10−4), (ii) dynamic, which includes a
moving robot (w = 0.12m, θ = 3× 10−4), and (iii) niche, which includes a robot
that is part of a niche (w = 0.75m, θ = 5× 10−4).

Given enough time, we would like that all the sources present in the search
environment be successfully localized. We employ a Lévy random walk for the
global search behavior. The Lévy random walk assigns a random orientation
(angle) and a random step length (magnitude) to the robot, following a Lévy
distribution. This exploratory random walk guarantees full coverage of the search
environment asymptotically. We terminate the inspection based on a predefined
coverage threshold and using a coverage map that is shared between the robots.

The shared coverage map is represented as a grid-based map of 10 × 10cm
cells. As the robots move across the surface, sense the acceleration cue, and
localize sources, they update the shared coverage map using their internal sensor
model. We use a simplified sensor model that is a two dimensional Gaussian
distribution of N (µ = 0m, σx = σz = 0.1m). To update the coverage map based
on a single robot’s observation, the sensor model Gaussian distribution centered
around the location of the reporting robot is superimposed on the coverage map
by comparing the coverage value in the map and the coverage value from the
sensor model at each point. The coverage value in the map is then replaced by
the maximum of the two values. The same update rule is applied for merging
coverage information from multiple robots to update the shared coverage map.
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Fig. 3: The columns show different angles of the two surfaces shown in the rows.
We study two surface models in our simulation experiments in Webots, one with
no obstacles in Scenario I (top row) and one with three cuboid obstacles in
Scenario II (bottom row). The three vibration sources and the cue spread are
visualized. The acceleration cue spread is affected by the presence of obstacles.

5 Simulation Experiments

We used the Amazon Web Services (AWS) cloud platform for batch simulations.
Each simulation instance was launched on a 4-core CPU with 8GB of RAM.

5.1 Experimental Objectives

Our desired objective for a given inspection experiment is threefold. We would
like that the swarm succeeds (i) in localizing all the sources (localization success),
(ii) in reaching the coverage threshold for terminating the inspection (termina-
tion success), and (iii) that all of the robots in the swarm manage to maneuver
around in the search space, without getting lost or stuck, sensing the cue to the
source locations while avoiding obstacles (maneuverability success).

To quantify the swarm performance on these aspects, we take inspiration from
metrics used in the fields of source localization and target search and consider
three performance metrics [17, 40]. In each scenario, we quantify (i) the source
localization accuracy, that is the proximity of a confirmed source location to its
ground truth location, (ii) the time to find each source present in the search
space, and (iii) the time to reach the coverage threshold termination criterion.
To gain insight into the control dynamics of the inspecting swarm, we look at
the time the robots spend in each of the control states described in Section 4.

5.2 Experimental Scenarios

The real-world inspection problem that underlies our research is a complicated
undertaking. Within the scope of this work, we study two simplified problems.
We consider two experimental scenarios. In each scenario, we deploy a swarm of
size N = 8 robots to inspect the surfaces for sources of vibration.
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Scenario I comprises a 2.5D curved cylindrical surface with projected flat
dimensions of 4×4m. The ANSYS simulations involve a full cylindrical surface of
2mm thickness, 4m radius, and 6m axial length. The surface section is a quarter
of the full cylinder with the arena edges 1m away from the cylinder edges. The
sources of vibration are at locations (x = 2m, z = 3m), (x = 1m, z = 1m), and
(x = 3.5m, z = 0.5m) on the projected surface reference frame, with the origin
at the top-left corner. The entire surface is subject to a foundation stiffness of
10−4 N

mm3 , and the mesh is sized uniformly with cells of 10×10cm. At the location
of each vibration source, we apply a sinusoidal load case with an amplitude of 1N
and frequency of 1Hz. The peak amplitude at steady state at each mesh node,
i.e. after roughly 9.75s, is then used for constructing the 2D Gaussian signal used
in Webots (see Section 3). For Scenario I, we use N (µ = 0m, σx = 0.15m,σz =
0.45m, ) scaled by 0.7708 for all three sources. For Scenario II, we use N (µ =
0m, σx = 0.1m,σz = 0.25m) scaled by 0.6511 at location (x = 2m, z = 3m) and
N (µ = 0m, σx = 0.15m,σz = 0.45m) scaled by 0.7334 and 0.7359 at locations
(x = 1m, z = 1m) and (x = 3.5m, z = 0.5m), respectively.

Scenario II is an extension of Scenario I; we further increase the geometri-
cal complexity of the search environment by introducing three cuboid obstacles
representing features such as ridges or add-on sections on the surface.

6 Results

We obtained the results of 100 trials of the two simulation experimental scenarios
described in Section 5. The random seed was fixed per robot. The robots’ starting
positions were randomized per trial. By simulating swarms of various sizes and
observing the effect of robot density on inspection performance, we chose the
swarm size N = 8. For the sake of brevity, those studies are not discussed here.

Figure 4 visualizes how presence of obstacles impacts the robots trajectories
and their coverage performance by comparing two trials of the two scenarios.

The swarm performance results are shown in Fig. 5. We considered the three
performance metrics described in Section 5: (i) source localization accuracy, (ii)
time to localize each source and to reach the %75 coverage threshold, and (iii)
time spent in each of the four main control states. In both experimental scenarios,
we observed that the experimental objectives we laid out in Section 5.1 were
successfully achieved. In particular, the robots managed to successfully localize
all three vibration sources in the environment while traversing the 2.5D surfaces,
performing obstacle avoidance, and sensing the vibration cue. The complexity of
the search environment increases from Scenario I to Scenario II. This increase in
complexity clearly affects the inspection completion time, i.e., the time the %75
coverage threshold is reached, as well as the time each of the three sources are
discovered (indicated by Si for i = {1, 2, 3} in Fig. 5b,f). This is also visible in the
time progress of discovering sources as shown in Fig. 5d,h, where the solid line
and shaded area represent the average and one standard deviation interval over
100 trials, respectively. The same effect can be noted by comparing the time spent
in the RW control state between the two scenarios (Fig. 5c,g). We can explain the
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(a) Scenario I (b) Scenario II (c) Scenario I (d) Scenario II

Fig. 4: Obstacles affect robot trajectories and overall coverage maps. Trajectory
and coverage plots for two trials of Scenario I (a,c) and Scenario II (b,d) are
compared. Trajectory of each robot is depicted in a different color (a,b). Higher
coverage level is shown in warmer color (c,d). Upon localization, a source is
marked on the coverage map as a circular region with a radius determined by
the range a cue was first perceived from by an approaching robot. Because the
spread of the cue is larger along the z axis, the size of the marked regions differ
depending on the direction of approach.

(a) Accuracy (b) Time until event (c) Time per state (d) Time progress

(e) Accuracy (f) Time until event (g) Time per state (h) Time progress

Fig. 5: The robots manage to successfully achieve all the experimental objectives
laid out in Section 5.1. The presence of obstacles negatively impacts the swarm’s
temporal performance but appears to have minimal impact on the source local-
ization accuracy. We study three main performance metrics in Scenario I (top
row) and Scenario II (bottom row): the localization accuracy (a,e), the time
elapsed before the discovery of a source and before reaching the %75 coverage
threshold (b,f), and the time spent by the robots in each of the four main control
states (c,g). The plots show results for 100 simulation experiments per scenario.

variation in source localization accuracy (Fig. 5a,e) by considering three main
factors. First, the more time the robots spend in the PSO versus the CA control
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state, the higher their chances will be to achieve a better localization accuracy.
Second, the interplay between the shape and spread of the cue and the placement
of the sources in the arena plays a significant role in how accurately a source can
be localized. Lastly, the various parameters of the inspection algorithm determine
how the robots find their way to the localized sources. These parameters were all
empirically set and none was systematically optimized. We hypothesize that their
optimal values may depend on the overall geometry of the search environment
and that by optimizing our inspection algorithm parameters, such as the PSO
coefficients, the random walk step size, the APF collision avoidance parameters,
the niche size, and the maximum niche recruitment range we can enhance the
various swarm performance metrics, including the source localization accuracy.

7 Conclusion

We developed a simulation and algorithmic framework that enables studying a
swarm of vibration sensing miniaturized wheeled robots that inspect simplified
surface models of spacecraft hulls in order to localize points of mechanical fail-
ure. We modeled points of mechanical failure as sources of vibration. The robots
sense vibration signals propagating through the surface as a cue for localizing
sources of vibration. We simulated realistic vibration signal propagation using
the ANSYS software, then simplified data transfer by fitting 2D Gaussian func-
tions to the simulation results. We used the Webots robotic simulator to study
the performance of our inspecting robot swarm in two experimental scenarios
involving three sources on 2.5D cylindrical surfaces in presence and absence of
obstacles on the surface. Our results support the viability of robot swarms for
surface inspection tasks based on sensing vibration signals through the surface.

Our future work will involve leveraging and extending the modeling and algo-
rithmic framework we developed here for studying scenarios of higher complex-
ity. First, given a specific search environment, we plan to leverage the simulation
framework developed in this work to perform a parameter optimization in order
to find the set of algorithmic parameters that result in improved performance
metrics. Second, we plan to develop a fully automated simulation pipeline to
facilitate randomized studies of a variety of environments with different geome-
tries. In particular, we plan to automate the process of simulating the vibration
signal from ANSYS such that the data is directly accessible by the simulated
robots within Webots. Third, we plan to implement realistic constraints in the
communication range and bandwidth of the simulated robots within Webots.

Our hope is that this work supports and inspires studies of vibration-sensing
robot swarms as a flexible solution for structural surface inspection applications.
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