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Abstract— Robot swarms can be tasked with a variety
of automated sensing and inspection applications in aerial,
aquatic, and surface environments. In this paper, we study
a simplified two-outcome surface inspection task. We task a
group of robots to inspect and collectively classify a 2D surface
section based on a binary pattern projected on the surface.
We use a decentralized Bayesian decision-making algorithm
and deploy a swarm of 3-cm sized wheeled robots to inspect
a randomized black and white tiled surface section of size
1m X 1m in simulation. We first describe the model parameters
that characterize our simulated environment, the robot swarm,
and the inspection algorithm. We then employ a noise-resistant
heuristic optimization scheme based on the Particle Swarm
Optimization (PSO) using a fitness evaluation that combines
the swarm’s classification decision accuracy and decision time.
We use our fitness measure definition to asses the optimized
parameters through 100 randomized simulations that vary
surface pattern and initial robot poses. The optimized algorithm
parameters show up to 55% improvement in median of fitness
evaluations against an empirically chosen parameter set.

I. INTRODUCTION

Automated robotic inspection can serve many applications
such as maintenance of bridges, wind turbines, oil and gas
pipelines, and aerospace infrastructure [1], [2], [3], [4]. In
many of these instances, the inspection task takes the form
of a binary classification problem. The classification goal
is to determine the state of an inspected surface area as
“desirable” or “undesirable” based on spatially-distributed
surface features. Multiple benefits can be expected from
deploying swarms of mobile robots to these types of tasks.
Compared to single-robot systems, swarms are resilient to
failure of individuals. Compared to fixed sensor networks,
robot swarms provide dynamic and flexible coverage per-
formances [5]. In large-scale swarms, low-cost operations
necessitates minimizing the cost and complexity of individual
robots. This promotes the cause of swarms of miniaturized
robots that employ computationally inexpensive algorithms.

The two-outcome swarm robotic surface inspection task
that we consider in this work requires two main enabling
mechanisms for the decision making: (i) a mechanism for the
swarm to share and integrate observations made by individual
robots, i.e., a sensor fusion mechanism, and (ii) a consensus
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mechanism to form a final classification decision out of the
individual decisions, i.e., a decision fusion mechanism. A
variety of distributed decision-making algorithms including
Bayesian [6], [7], [8], [9], and bio-inspired [10], [11],
[12], [13], [14] algorithms have been employed in studies
involving robot swarms. Compared to bio-inspired algo-
rithms, Bayesian algorithms provide a statistically grounded
approach for integrating the observations and decisions of
the individual robots. In a previous contribution, a Bayesian
approach was demonstrated in a swarm of abstract agents
tasked with classifying a monochrome environment [9].
Here, we build upon that work in three ways. First, we extend
the algorithm presented in [9] by introducing a hysteresis
parameter that defines a minimum observation criteria around
the probability threshold before a robot updates its decision.
Second, we adapt the simulation implementation from point
mass dynamics to physically modeled wheeled robots by
simulating proximity sensing and collision avoidance and
present experiments within the physics-based Webots robotic
simulator. Finally, we use a Particle Swarm Optimization
(PSO) scheme and develop an automated optimization frame-
work that leverages our Webots simulation to heuristically
find a set of optimized algorithm parameters with improved
decision-making time and accuracy.

This work strives to set a step towards developing al-
gorithmic and hardware tools that support sensing tasks
by robot swarms. We anticipate that (i) swarms of small-
scale robots have the potential to deliver a variety of real
world sensing and inspection applications, and that (ii) the
statistically grounded Bayesian decision-making framework
has the flexibility to be extended and applied to a broad class
of spatially-distributed feature classification tasks by swarms.

II. PROBLEM DEFINITION

We define the problem that we set out to undertake as
the following. A group of NN robots must complete a binary
classification task based on perceiving a spatially distributed
feature spread over a bounded 2D surface section. A black
and white binary pattern representing the spatially distributed
feature is projected on the surface. The pattern’s fill ratio
determines the proportion of the white-colored area in the
overall pattern surface area. The robots each individually
inspect the surface, share their information with the rest of
the swarm, and collectively determine whether the surface is
covered with a majority white or a majority black pattern.

The class of real-world inspection problems that underlies
our abstract problem definition here is characterized by three
main features: (i) the need to inspect a bounded surface
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Fig. 1: We use a realistic model of the 4-wheeled Rovable
robot in our simulation experiments [16]. The real Rovable
robot (b,d) and its simulation model created in Webots
(a,c) have similar physical properties. The robots adhere to
ferromagnetic surfaces using their magnetic pincher-wheels.
For scale, each wheel on the robot is 12mm in diameter.

environment, (ii) the need to deliver a binary classification
decision for the inspected environment, and that (iii) the
feature that informs the classification decision is spatially
distributed in the environment where the robots operate.

III. SIMULATION AND OPTIMIZATION FRAMEWORK

Our simulation framework serves as the virtual environ-
ment in which we study the operation of our inspecting robot
swarm. We use the Webots robotic simulator [15]. Within
Webots, we have three main components: (i) a realistic robot
model of a 3-cm sized 4-wheeled robot that inspects a target
surface section, (ii) the target surfaces that the robots traverse
to inspect with a black and white pattern projected onto
them, and (iii) a (supervisor controller) script that collects
robot positions, sensor measurements, observations, beliefs,
and decisions. The robot model, shown in Figure 1, is based
on the real Rovable robot [16]. Originally designed as a
mobile wearable robot, Rovables are capable of wireless
communication and low-power localization using their wheel
encoders and on-board IMUs for inertial-based navigation
[16]. Within Webots, the Rovable proto file captures the
physical properties of the real robot, such as mass, center
of mass, and surface contact properties. Figure 2 shows our
overall Webots simulation world with four Rovable robots on
patterned surfaces of size 1m x 1m with different fill ratios.

Our optimization framework consists of two main compo-
nents: (i) our Webots simulation world described above and
(i) a PSO-based optimization scheme where each particle
in the PSO swarm is an instance of our simulated world
with a specific set of algorithm parameters. The optimization
goal is to find a set of algorithm parameters that enable
the robots to classify the environment with speed, accuracy,
and consistency. Pugh et al. showed that PSO could out-
perform Genetic Algorithms on benchmark functions and
in certain scenarios of limited-time learning with presence
of noise [17], [18]. This motivates the choice of PSO here
since stochasticity is inherent to the approach employed by
the robots. Multiple computationally efficient noise-resistant
versions of PSO have been proposed [19], [20]. We evaluate
each particle multiple times and consider a combination of
average and standard deviation of observed performances.
Each evaluation generates new floor patterns and robot poses.

In the PSO swarm, the velocity of particle ¢ in dimension j
is determined by three components: (i) the particle’s velocity
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Fig. 2: Within the Webots robotic simulator, we simulate
a bounded 2D surface section of size 1m x 1m with a
monochromatic randomized pattern. The proportion of white
in the pattern, denoted as f, is the environment fill ratio.
The robots have to classify the environment as mostly white
(f > 0.5) or mostly black (f < 0.5). Environments with fill
ratios close to f = 0.5 are hardest to classify. There are a
total of 256 squares in the arena, 16 squares along each side.

at the previous iteration weighted by an inertia coefficient w,
(ii) a randomized attraction to the particle’s own personally
best visited location over previous iterations z; ; weighted by
wp, and (iii) a randomized attraction to the particle’s neigh-
borhood’s best visited location over the previous iterations
zj ; weighted by w, (Equation la). r1 and 7> are random
numbers drawn from a uniform distribution between 0 and
1. Attractions are determined through a fitness evaluation
(Algorithm 2), discussed in Section V, that rewards fast
accurate consistent decisions. Particle positions are then set
at each time step using the updated velocity (Equation 1b).

Vi j = W jwy Ty (T =T ) Fwn - (]~ ;) (la)

(1b)

Tij 1= Tij + Vij

The total execution time for the PSO optimization process
depends on four factors: (i) population size (IV,), (ii) individ-
ual candidate evaluation time (t.), (iii) number of iterations
of the algorithm (/V;), and (iv) number of re-evaluations of
each candidate particle position within the same iteration
(Nye). We evaluate all particles and their re-evaluations in
parallel at each iteration, as a result the total time we get for
the optimization procedure is as below:

total = te - Nz (2)

The individual candidate evaluation time . depends directly
on the complexity of the simulation model utilized and its
corresponding computational load.

IV. INSPECTION ALGORITHM

The structure of our proposed algorithm is shown in Algo-
rithm 1. The algorithm enables simulated Rovable robots to
inspect black and white 2D environments and classify the fill
ratio as being above or below a predefined threshold level.
Each robot in the swarm maintains a Bayesian model of the
fill ratio that it updates using new self made observations
and incoming observations from other robots. Each robot
individually forms its decision about how to classify the fill
ratio using a predefined credibility threshold and the posterior
distribution. The robots make binary observations based on



Fig. 3: Simulated Rovable with time-of-flight distance sen-
sors, placed at 30 degree increments. A distance sensor is
triggered by the parameter d given in millimeters.

their location in the environment, through an externally
simulated supervisor. We model the binary color observations
C € {0,1} as drawings from a Bernoulli distribution. The
fill ratio f € [0,1] is unknown to the robots and is modeled
as a Beta distribution that is updated based on the incoming
color observations. The Beta distribution is initialized with
parameters o and Sy as Beta(a = ag, 8 = By), where g
determines how regularizing the prior distribution is.

C ~ Bernoulli(f) (3a)
f ~ Beta(a, ) (3b)
f|C ~ Beta(a+C, 5+ (1-0C)) (3c)

The robots start inspecting the environment at randomized
initial locations and orientations and explore the environment
using a random walk while performing collision avoid-
ance. Our random walk is implemented by drawing from a
Gaussian distribution that is upper bounded by a parameter
s, where s defines the number of time steps the robot
moves forward before taking a random turn. Each robot then
turns by sampling a random angle drawn from a Gaussian
distribution upper bounded by /2. The collision avoidance
is implemented using eight simulated time of flight sensors
from the Webots library placed around the front of the robot
(Figure 3). We introduce a parameter d [mm] that defines the
minimum sensed distance before a robot enters the collision
avoidance state; d applies to all eight sensors equally.

The robots make observations at regular intervals every 7
simulation time steps from their location in the environment,
update their posterior distribution as in Equation 3c, and
broadcast their observation. The robots pause to sample the
environment for 5 simulation steps. Upon receiving a radio
message containing a new observation from an emitting
robot, a receiving robot updates its posterior as it would
using its own observations. This forms the decision fusion
mechanism mentioned in Section I in two configurations:
with and without positive feedback. When positive feedback
is false (u ™), robots broadcast their most recent observation.
When positive feedback is true (u™), current decision is
broadcasted instead. If no decision was made then the most
recent observation is sent. After every posterior update,
a robot also updates its classification decision using the

Algorithm 1 Bayesian Inspection Algorithm
Input: T, v, Bo, 7, f, 7,y De
Output: d; € {0,1}

L a4+ a, > Initialize alpha
2. B« B, > Initialize beta
3 d+— —1 > Initialize incomplete decision flag
4: while t < T do

5: Perform Random Walk for s Time Steps

6: if 7 divides ¢ then

7: Pause() > Stop all movement for 40ms
8: C ¢ Observed Color

9: a+—a+C

10: B+ B+(1-0C)

11: end if

12: C' + Message Color

13: a+—a+C

14: BB+ (1-C")

15: p < Beta(a, 3,0.5)

16: if dy # dy;—1 then

17: if p > p. and hysteresis then

18: df <0 > Decision majority black
19: else if (1 — p) > p. and hysteresis then
20: dy <1 > Decision majority white
21: end if
22: end if
23: if dy # —1 and u™ then > Broadcast decision
24: Broadcast dy
25: else > Broadcast observation
26: Broadcast C'
27: end if

28: t+—t+1
29: end while

predefined threshold 6 and a credibility threshold p.. The
credibility threshold p, is defined as the probability mass of
the posterior distribution that must lie on one side of the
predefined threshold 6 = 0.5 for the classification decision.
In particular, if the posterior cumulative distribution p at
f = 0.5 is greater than or equal to the credibility threshold
pe then the classification decision may be set to 0 (majority
black) or otherwise set to 1 (majority white).

1 p(f =05) <pe @

A hysteresis criterion must be met before setting the
decision. This is determined using the hysteresis parameter
denoted as h. The hysteresis parameter defines the minimum
number of observations that must have been made after the
posterior cumulative distribution, p, satisfies the credibility
threshold, p.. A non-zero hysteresis parameter enforces that
only after h observations have been made and p continues to
satisfy the condition described in Equation 4, the classifica-
tion decision may be updated correspondingly. This is shown
in Equation 5 where o; defines the number of observations
by robot ¢ after the condition in Equation 4 is satisfied and

0 = {0 p(f = 0.5) = pe
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Fig. 4: The finite state machine governing a robot’s behavior.
d(t) indicates the measured distance from any sensor at
time ¢ in mm. o(t) tracks the total observations made up
until simulation time step t. o; stores the initial number of
observations once the credibility threshold is passed, for the
purpose of calculating the hysteresis criterion. A indicates
the hysteresis parameter. p. is the credibility threshold.

o(t) tracks the total number of observations made at time
step ¢t. Note that as new observations become available to a
robot, its posterior cumulative distribution gets updated and
the criteria defined in Equation 4 may no longer be satisfied.
In such a case, o; is reset to 0 and the hysteresis is broken.

o(ty—o0; > h

o(t)—o; <h ®)

hysteresis =

We implement Algorithm 1 through the six-state finite
state machine shown in Figure 4, where the states are
denoted as circles, variable assignments as rectangles, and
conditionals as diamonds. Each simulation step is 8ms long.

V. EXPERIMENTS

We used the Amazon Web Services (AWS) cloud platform
for running the Webots simulations and the optimization
process. Each simulation instance was launched on a 4-core
CPU with 8GB of RAM and ran for a maximum of 60
minutes in simulation time, 7" = 3600s.

The PSO parameters search space needs to be bounded
before the PSO search is launched. In the following, we
motivate the boundaries of our search space by considering
physical features of the simulated arena. We bound the
observation interval parameter, 7, by deriving the number
of simulation time steps needed for the robot to cross one
colored square along one side, denoted as t,. The random
forward parameter, s, is bounded by deriving the time steps
required to cross the arena along one side, denoted as ¢,. The
collision minimum distance parameter, d, was bounded by
the range of the simulated sensors. The hysteresis parameter,
h, was bounded by the number of squares in the arena,
corresponding to the minimum number of attainable samples
from the entire arena if a robot travelled one tile per sample.
The lower and upper bounds of 7 and s were then expanded

Algorithm 2 Fitness Evaluation

1: fi <0 > Initialize individual fitness to O
2:n; <0 > Initialize counter to 0
3: while t < T,,,, do > Simulation loop
4: for Robot i do

5: if New Decision for Robot i then

6: n; < n; +1

7: if Decision is Correct then

8: fi+ fi+t > Add decision time
9: else

10: fi fi+ Thaz > Add max penalty
11: end if

12: else if t = T,,,, & No Decision then

13: n; < n; +1

14: fz  Thnag

15: end if

16: end for

17: end while

return fit = 4 Zfio fi/ni > N=number of robots

._
*

by an arbitrarily chosen factor of 5 with the presumption that
the optimal parameter would lie within these bounds. We
assumed a perfect physics model of the robot that traverses
the arena at a constant speed (2.77 cm/s).

The PSO swarm is initialized randomly within the
bounded search space, with the exception of one particle
which is set to an empirically chosen location. We perform
the optimizations with 15 particles, each evaluated 10 times
for noise resistance, and proceed for 75 iterations. For the
empirical particle, the observation interval 7 is set to the
number of time steps needed to cross one square, t; = 282.
The random forward variable s is set to the number of
time steps needed to cross two squares, s = 564. We use
an estimate of one robot body length to find the empirical
collision avoidance distance d = 50. Lastly, the hysteresis
parameter h is initialized at zero. This allows the optimiza-
tion process to heuristically assess the utility of a non-zero
hysteresis parameter. The final fitness assigned to a particle
p; is then a weighted sum of the average (1) and the standard
deviation (o) across the noise evaluations as described in
Equation 6. fit,(p;) denotes a fitness evaluation obtained
through a single instance of particle p; following Algorithm
2. The parameter +y is set to 1.1 empirically, giving a slightly
higher significance to consistency compared with average
performance. The optimization process favors lower fitness
values as iterations progress, rewarding particles that return
a low fitness value across multiple noise evaluations.

fitness(p;) = p(fitn(pi)) +v - o(fitn(pi)) (6)

VI. RESULTS

The optimization results are shown in Figure 5. Through
iterations, the average personal best fitness of the particles
can be seen to converge downward towards the global



best fitness along with the standard deviation. Since the
simulation evaluation is noisy and particle exploration is
stochastic, the individual particle fitness values, represented
as the green dots, have large variations as iterations progress.
This is also seen in the average swarm fitness. Table I shows
the empirical particle along with the parameter bounds, and
Table II shows the optimal parameters. We discuss different
optimal parameters between the two settings of positive
feedback. In both optimal particles, the observation interval
7 is brought towards the lower bound, where our sampling
pause prevents an absolute minimum. However the hysteresis
parameter, h, was brought up despite the empirical particle
having no hysteresis. This combination allows the robots
to make faster observations (small 7), yet remain robustly
elastic in their initial and subsequent decisions (non-zero h).
The optimal value of the random forward variable s differs
largely depending on the use of positive feedback. When
positive feedback is off, s is set lower; each robot works to
greedily gather data and shape individual decisions. On the
contrary, robots spend more time exploring the arena with
positive feedback, indicated by a larger value for s. In this
case, individual robot decisions become heavily influential.
A similar rationale applies to the smaller collision avoidance
parameter d obtained when no positive feedback is used;
collision avoidance appears to become less critical and robots
greedily prioritize sampling.

We evaluate the performance of the optimized particle
against the empirical particle through 100 randomized ex-
periments; varying the generated (f = 0.52) pattern pro-
jected on the arena and initial robot poses. Figure 6 shows
the distribution of fitness values obtained across different
fill ratios. Each dot represents a single particle evaluation
calculated using Algorithm 2. The optimized parameters
achieve a significantly lower median evaluation and tighter
performance compared to the empirical parameters.

The obtained fitness distributions for a fill ratio of f =
0.52 across the 100 randomized experiments are shown in

TABLE I: ag: white observation prior parameter. 5y: black
observation prior parameter. 7: observation interval. s: ran-
dom forward parameter. d: collision avoidance distance. h:
hysteresis parameter. n: boundary multiplier, in our approach
n = 5. We derive 5 = 282 and ¢, = 4515 using the robot
speed (2.77 cm/s) and tile size (6.25cm) (see Section V).

ag = Po T s d h
0,0] | [a/m, & 1] | Tts/m, ta-n] | [5,145] | [0, 128]
0 282 564 50 0

TABLE II: Empirical parameters are shown as p. Optimal
parameters are shown as py_ and p;,, for experiments
without and with positive feedback, respectively.

Parameter Set | « T s d h
P 0 | 282 | 564 | 50 0

pi 0 56 178 | 29 | 17
p;+ 0 57 912 | 51 10
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Fig. 5: Optimization progression using a fitness evaluation
that combines decision accuracy and speed (Equation 6),
15 particles, 10 noise evaluations, and for 75 iterations. We
arrive at a best found fitness of 508.532 without positive
feedback and 192.026 with positive feedback. Fitness values
of the 15 particles (green) and the average swarm fitness
(purple) are shown. The average of personal bests (blue)
along with one standard deviation (shaded blue) can be seen
to converge to the global best fitness value (red). Individual
particle fitness and average swarm values exhibit stochastic
behavior due to randomness inherent in the robot behavior.

Figure 7. The distribution of fitness values shift towards the
favorable side with and without positive feedback. Further-
more, the optimized cases show faster stabilization towards
the correct beliefs (Figure 8). However, the experiments with
positive feedback stabilize towards incorrect classifications
more often compared to those without positive feedback.
This occurs when robots make hasty decisions that quickly
spread across the group due to the positive feedback mech-
anism. Interestingly, the optimized parameters require the
swarm to sample new tiles at a lower rate. Despite this, it can
be seen in Figure 7 that the robots are making faster correct
classifications. We see that the non-zero hysteresis parameter
ensures stability in the classification decision despite the
apparent under-sampling, eventually benefiting the decision
fusion mechanism through positive feedback. In contrast,
over-sampling without hysteresis (h = 0) quickly leads the
robots to misleading classification decisions. This is partic-
ularly detrimental with positive feedback, where broadcast
incorrect decisions become adversarial for the group.
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specifically optimized for the case of f = 0.52. We observe a 55.3% reduction in the median evaluations through the
optimization without positive feedback and a 51% reduction in the median evaluations with positive feedback for f = 0.52.
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Fig. 8: Average beliefs and coverage of the robots over 100
randomized simulation experiments. The simulations were
randomized by rearranging the projected pattern (with the
same fill ratio) and initial robot poses. The shaded regions
denote one standard deviation. The pattern fill ratio was fixed
to f = 0.52 in all cases. The optimized parameters lead the
robots to converge faster towards the correct belief.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a simulation and optimization
framework for studying a two-outcome surface inspection
task using a swarm of miniaturized wheeled robots that
employ a decentralized Bayesian algorithm. We built upon
a previously studied inspection algorithm by introducing
a new hysteresis parameter that creates elasticity around
robot decisions. We used the Webots robotic simulator to
perform accurate physics-based simulations of a multi robot
system. Using a noise resistant variant of the Particle Swarm
Optimization (PSO) method, we obtained a set of optimal
parameters. Results from 100 randomized experiments re-
vealed that the robot swarm employing optimized algorithm
parameters were able to achieve a 55% improvement in
median fitness evaluations without positive feedback and
a 51% improvement with positive feedback compared to
the empirically chosen parameters. Furthermore, the results
revealed that a non-zero hysteresis parameter leads to im-
provements in the final decision accuracy. In future work, we
plan to study two-outcome surface inspection tasks of higher
complexity. In particular, we will (i) conduct simulations
for inspection of geometrically complex 3D surface sections
and consider dynamic environments, (ii) study commonly
employed sensing modalities and signal processing methods
such as camera feed or vibration sensing, and (iii) conduct
real life experiments to validate the performance of the
optimized parameter set obtained from simulation in reality.
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