
only map of any DIB carrier at this scale and
the only one taking the distance information as
a major parameter. Together with the measured
scale height, this is the first 3D study of the spa-
tial distribution of the DIB-bearing ISM clouds.
The projected distribution of the extinction
due to the interstellar dust is markedly similar
to that of the DIB carrier [see (26) for the cor-
relation analysis], confirming the strong corre-
spondence between the two (32). The map of
the extinction is itself an advance, as it maps
the regions out of the Galactic plane and probes
dust to greater distances than present maps
(33) of these regions and is consistent with maps
in the literature. Our success in producing the
maps of the DIB carrier implies good prospects
for future spectroscopic surveys (14–16) that
will produce similar (15) or better quality (14, 16)
spectra and will also rely on DIBs to provide in-
formation about the ISM. Our work opens new
possibilities in the study of DIBs and also offers
a unique way of comparing DIBs with other in-
terstellar species by studying their out-of-plane
distribution. This can be translated into the study
of physical and chemical properties of DIB car-
riers in the near future.
The measured 3D distribution, especially the

unexpectedly high scale-height of the DIB 8620
carrier, calls for a theoretical explanation. There
are two options—either the DIB carriers migrate
to their observed distances from the Galactic
plane, or they are created at these large dis-
tances, from components of the ISM having a
similar distribution. The latter is simpler to
discuss, as it does not require knowledge of the
chemistry of the DIB carrier or processes in
which the carriers are involved. Khoperskov and
Shchekinov (34) showed that mechanisms res-
ponsible for dust migration to high altitudes
above the Galactic plane segregate small dust
particles from large ones, so the small ones form
a thicker disk. This is also consistent with the
observations of the extinction and reddening at
high Galactic latitudes (35).
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ROBOTICS

Programmable self-assembly
in a thousand-robot swarm
Michael Rubenstein,* Alejandro Cornejo, Radhika Nagpal

Self-assembly enables nature to build complex forms, frommulticellular organisms to complex
animal structures such as flocks of birds, through the interaction of vast numbers of limited
and unreliable individuals. Creating this ability in engineered systems poses challenges in the
design of both algorithms and physical systems that can operate at such scales.We report a
system that demonstrates programmable self-assembly of complex two-dimensional shapes
with a thousand-robot swarm.This was enabled by creating autonomous robots designed to
operate in large groups and to cooperate through local interactions and by developing a
collective algorithm for shape formation that is highly robust to the variability and error
characteristic of large-scale decentralized systems.This work advances the aim of creating
artificial swarms with the capabilities of natural ones.

I
n nature, groups of thousands, millions, or tril-
lions of individual elements can self-assemble
into a wide variety of forms, purely through
local interactions. Examples can be found
across a wide range of physical scales and sys-

tems: at the molecular scale with self-assembly
of crystals or rotary motors of bacterial flagella
(1, 2), at the cellular scale with the development
ofmulticellular organisms (3, 4), and at the colony
level with ants creating structures such as rafts,
chains, and nests (bivouacs) using only their inter-
connectedbodiesasbuildingmaterial (5,6).Through
collective shape formation, a group can dramat-
ically change how it interacts with its environ-
ment. For example, the evolution ofmulticellular

body plans enabled organisms to rapidly fillmany
ecological niches (7), and self-assembly of bridges
and bivouacs allows army ant colonies to traverse
difficult terrain while providing security and en-
vironmental regulation for the queen and brood
(5). These examples of collective intelligence are
fascinating to scientists across disciplines, as much
of the global complexity arises from interactions
among individuals that are myopic, sensing and
interacting at scales many orders of magnitude
smaller than the phenomenon itself.
In the field of robotics, researchers use inspi-

ration from collective intelligence in nature to
create artificial systems with capabilities ob-
served in natural swarms. Researchers have de-
signed tiny robots, inspired by bees and ants, that
are envisioned to work together in large groups,
even assembling together to cross difficult ter-
rains (8–10). Similarly, using inspiration from
multicellular development, several groups have
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developed self-assembling “cellular” robots that
can reconfigure into many morphologies to com-
plete different grasping or locomotion tasks (11),
or can act as programmable matter that can rap-
idly assemble into user-specified tools such as a
wrench or key (12, 13). However, there still exists
a substantial gap between the conceptual designs
and the realized systems. Increasing the scale of
autonomous robotic systems remains a significant
challenge both for algorithm and hardware design.
Current systems are on the order of 10 to 50 ro-
bots, with only a few exceeding 100 robots (14, 15),
in part because of cost and design choices that
make manufacturing and operations difficult. This
lack of large-scale physical systems has in turn
hindered experimental investigation of algorithms
for engineering self-assembly and other forms of
complex collective intelligence. Although simu-
lators are a valuable tool for systematically ex-
ploring algorithm behavior, they frequently involve
simplifications for computational tractability. Such
simulated systems can fail to faithfully reproduce
the intricate physical interactions and variability
that exist in real systems, and their fidelity to the
real world is difficult to verify or improve with-
out feedback from physical experiments.
We report a system that addresses both the

physical and algorithmic challenges of robotic
swarms.Wedemonstrate a thousand-robot swarm
capable of large-scale, flexible self-assembly of
two-dimensional shapes entirely through pro-
grammable local interactions and local sensing,
achieving highly complex collective behavior.
The approach involves the design of a collective

algorithm that relies on the composition of
basic collective behaviors and cooperative moni-
toring for errors to achieve versatile and robust
group behavior, combinedwith an unconventional
physical robot design that enabled the creation
of more than 1000 autonomous robots.
In designing a large-scale robot swarm, the

extent to which the robots can be fully auto-
nomous (capable of computation, locomotion,
sensing, and communication) must be balanced
against the cost per robot. Mass production
favors robots with fewer and cheaper compo-
nents, resulting in lower cost but also reduced
capabilities and reliability. Additionally, opera-
tions such as powering on/off, reprograming,
and charging must be addressed; at the scale of
a thousand robots, there is a substantial and prac-
tical need for group-level rather than individual-
level operation (16). In general, how individual
capabilities and reliability relate to collective capa-
bilities and reliability remains an active theoretical
question. Here, we demonstrate that the limited
capabilities of our system are sufficient to per-
mit the execution of a complex algorithm for
self-assembly at the swarm level for a collective
of 1024 robots (Fig. 1), both theoretically and
experimentally.
We designed a simple low-cost robot called

Kilobot, first presented in (17) with a small pro-
totype swarm of 30 robots executing a suite of
simple collective behaviors. Kilobot exploits sev-
eral unconventional design choices, such as using
vibrationmotors for slidingmovement rather than
traditional wheels (18) and reflecting infrared

light off the table surface below for communi-
cation and distance sensing between robots. Vibra-
tion motors provide noisy locomotion without
position feedback, preventing a single robot from
traveling long distances with any precision. Ro-
bots can measure distance to a neighboring robot
by sensing the infrared light intensity of received
messages, although this measurement is noisy
and provides no information about the relative
angle between the two robots. In addition, the
system as a whole is inherently decentralized
and asynchronous; any collective behavior must
be achieved purely through local interactions
between neighboring robots. Some individual
limitations can be overcome through coopera-
tion; a robot can use distance measurements
from a stationary neighbor as feedback to en-
able more precise motion, and errors in distance
sensing can be reduced by comparing readings
among neighbors.
We developed a collective algorithm that guar-

antees that a large group of robots, with limited
capabilities and local communication, can coop-
eratively assemble into any 1-connected user-
specified shape [with some restrictions (19)]. The
self-assembly algorithm (Fig. 2) composes three
primitive collective behaviors: (i) edge-following,
where a robot canmove along the edge of a group
by measuring distances from robots on the edge;
(ii) gradient formation, where a source robot can
generate a gradient value message that incre-
ments as it propagates through the swarm, giving
each robot a geodesic distance from the source;
and (iii) localization, where robots can form a

Fig. 1. Kilobot swarm robot. (A) A Kilobot robot, shown alongside a U.S. penny for scale. (B) Each Kilobot has an onboard microcontroller for executing programs
autonomously, two vibration motors for moving straight or turning on a flat surface, and a downward-facing infrared transmitter and receiver. Robots communicate
with others within a range of 10 cm (roughly three robot diameters) by reflecting infrared light off the table below. Communicating robots can evaluate relative
distance by measuring the strength of the received infrared signal, but they cannot sense relative bearing (angle). (C) A 210 Kilobot swarm.The Kilobot design allows
for all operations on the entire swarm (charging, programming, etc.) to take a constant time to complete, independent of the number of robots in the swarm.
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local coordinate system using communication
with, and measured distances to, neighbors. The
self-assembly algorithm links these three primi-
tives with a finite-state automaton. We describe
the algorithm at a high level here; see (19) for a
detailed description of each aspect along with
proofs of correctness and completion.
All robots are given an identical program that

includes the fixed self-assembly algorithm and
an image of the specific target shape and size.
The robots are initially tightly packed into an
arbitrarily shaped group without any knowledge
about their location in the environment (Fig. 2).
To start the self-assembly process, a user places
four specially programmed seed robots next to
the initial group, marking the position and ori-
entation for where the shape should be formed
in the environment. The seed robots become the
source of a gradient formation that propagates
through the initial group. Robots along the outer
edge of the initial group are able tomovewithout
being physically blocked. They can determine that
they are on the outer edge by comparing their
gradient values to those of their neighbors. These
robots can then use edge-following around the
stationary initial group to reach the seed. To
avoid congestion that would occur if all robots
along the outer edge moved at once, random-

ness is used to allow only a subset to start motion
at any one time. This method creates the effect
of the initial group “dissolving” from the outer
edge inward, with all robots eventually edge-
following to the seed.
Robots have no direct information about their

global position, only the distances to nearby neigh-
bors. However, they can use this distance infor-
mation to collectively construct a coordinate system.
Initially, the stationary seed robots embody the
origin of this coordinate system. As new robots
arrive at the seed, they can use the localization
primitive to determine their own position in
this coordinate system; once this occurs, they
can become reference points for the localization
of additional robots. In this way, a coherent co-
ordinate system can be built up through local
interactions. The localization primitiveworks in
the following way: Localized robots continually
transmit messages that contain their (x, y) po-
sition in the coordinate system. A new robot listens
and measures distances to all previously local-
ized neighbors; if it can observe at least three
stationary and noncollinear localized robots, it
can compute its own (x, y) position using a dis-
tributed implementation of trilateration (Fig. 2)
(19, 20). Moving robots continually compute both
their location and gradient value as they move.

Once a robot is localized, it can determine
whether it is located inside the desired shape
by comparing its position to the shape image.
If it is not within the shape, the robot edge-
follows the partially formed assembly until it
detects that it has entered the shape. Once
inside the shape, the robot continues to edge-
follow until one of two conditions is met. If
the robot is about to exit the shape, or if it is
next to (less than a predefined distance from)
a stationary robot that has the same gradient
value as itself, it becomes stationary for the re-
mainder of the process. This process of robots
moving into and joining the assembly continues
until the shape is filled with robots. The overall
effect is that the shape builds up in successive
layers (Fig. 2 and Fig. 3J).
This seed-initiated self-assembly algorithm

can form a large class of shapes, relying only
on local interactions of the robots [see (19) for
proof]. The algorithm resembles previous lattice-
based algorithms for collective construction and
self-assembly of modular robots (12, 13, 21–24)
and uses conceptual primitive behaviors found in
previous work, such as edge-following (23–25),
gradient formation (23,26) and localization (22,23).
However, unlikemost previousmethods, our algo-
rithm allows components to be positioned freely
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Fig. 2. Collective self-assembly algorithm.Top left: A user-specified shape is given to robots in the form of a picture. Top right: The algorithm relies on
three primitive collective behaviors: edge-following, gradient formation, and localization. Bottom: The self-assembly process by which a group of robots
forms the user-defined shape.
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in continuous two-dimensional space and comes
with a provable guarantee that the shape will
form correctly. The use of continuous space im-
plies that the implementations of the primitive
behaviors are substantially different because of
continuous and noisy sensing and motion, and
proving correctness is more complex as the
shape may be self-assembled differently each
time because of differential packing of robots.
However, avoiding grid restrictions allows for
simpler robots and more robustness to impre-
cision in element positioning, which was in-
strumental in translating our algorithm onto a
1000-robot swarm.
Moving from abstract algorithms to physical

robots requires solving several additional chal-
lenges. Mathematical models assume idealized
behavior in order to achieve tractability; how-
ever, real robots exhibit much more complex be-
haviors. For example, robots often have imprecise
locomotion, noisy distance sensing, and message
loss. Moving from tens of robots to more than a
thousand introduces additional nonideal be-
haviors that are not easily observed in smaller
groups and are therefore rarely incorporated
into simulators formodeling large robot swarms.
These include systematic errors and high varia-
bility in robot locomotion and sensing, which
can be manually detected and easily corrected in
small groups but are too cumbersome and time-
consuming to correct in larger groups, resulting
in robots with statistically different variability.
Increasing group size also increases the occur-
rence of statistically rare events, such as a robot
becoming completely immobilized because of
motor failure or a robot getting physically pushed
by another. We observed that with a thousand
physical robots running for tens of hours, high
variability and rare errors are inevitable and
capable of completely bringing such abstract
algorithms to a halt.
To achieve robustness at the 1000-robot scale,

we used several additional algorithmic strategies
(19). For example, a continuous-space shape repre-
sentation in our algorithm describes the desired
shape as a boundary but does not dictate the exact
location of robots within that shape. This enables
the algorithm to tolerate a variety of packing pat-
terns of robots within the shape, helping to pre-
vent small position errors by the robots from
propagating into large-scale self-assembly failures.
One key technique for robustness was cooperative
monitoring, in which a robot uses interactions
with neighbors to detect and recover from faults
that it cannot observe itself. For example, an
immobilized robot can cause havoc in an edge-
following algorithmby causing a permanent block-
age. Similarly, localized robots can be physically
pushed and therefore no longer have correct
knowledge of their position in the swarm, and
this error can then propagate through the rest
of the assembling swarm. The robots lack the
internal sensors to detect such rare events on
their own; however, by using neighbor interac-
tion, these faults can be detected. For example,
both errors cause sensed distance between neigh-
bors to change in predictableways. This allows for

autonomous recovery: An immobilized robot can
reset its motors and try again, or it can signal to
other robots that they should move around it;
similarly, a pushed robot can selectively reeval-
uate its position and correct for the unintended
movement. In general, many faults can be de-
tected through information exchange with neigh-
bors; this cooperative monitoring was essential
to enable large-scale swarm experiments without
human intervention.
Using this algorithmic approach, we conducted

several large-scale experiments (Fig. 3 and movies
S1 to S4). We programmed the full swarm of
1024 robots to self-assemble into two shapes,
each taking roughly 12 hours of execution time.
We performed 11 additional experiments with
smaller collectives to analyze the accuracy of shape
formation and to investigate the consistency of
the collective behavior (19). All experimental
trials fully assembled the desired shape without
human intervention (such as charging batteries
or reprogramming); hence, the collective be-
havior is remarkably robust. To quantitatively
measure the accuracy of shape formation, we
measured the mean square error between the

true position of each robot (as measured from a
calibrated camera) and each robot’s internal
localized position in the shared coordinate sys-
tem (Fig. 3G). We observed that the final shape
accuracy is high but not perfect; errors by indi-
vidual robots during the assembly process can
translate into global warping of the shape or
small packing defects, but without halting the
self-assembly process. To test consistency, we
used approximately 100 robots to form the same
rectangular shape 10 times. The results show that
although the shape accuracy values are compar-
able between experiments, the packing pattern
of robots can exhibit considerable variability, as
is true in natural self-assemblages. These patterns
are a manifestation of the natural variation in
agent behavior in such large groups.
Experiments also revealed several interesting

emergent behaviors that occur during the for-
mation process (Fig. 3). For example, “traffic jams”
of edge-following robots formed behind par-
ticularly slow robots, similar to vehicle traffic. An-
other observedbehaviorwas the complex “erosion”
of the initial group, caused by edge-following
robots that would accidently push stationary

Fig. 3. Self-assembly experiments using up to 1024 physical robots. (A, C, and E) Desired shape
provided to robots as part of their program. (B and D) Self-assembly from initial starting positions of
robots (left) to final self-assembled shape (right). Robots are capable of forming any simply connected
shape, subject to a few constraints to allow edge-following (19). (F) Completed assembly showing global
warping of the shape due to individual robot errors. (G) Accuracy of shape formation is measured by
comparing the true positions of each robot (red) and each robot’s internal localized position (gray). (H
to K) Close-up images of starting seed robots (H), traffic backup due to a slowly moving robot (I),
banded patterns of robots with equal gradient values after joining the shape (robots in each
highlighted row have the same gradient value) (J), and a complex boundary formed in the initial group
(dashed red line) due to erosion caused by imprecise edge-following (K).
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robots and create sharp edges; this resulted in a
positive-feedback process where the sharp edges
attracted more collisions, resulting in complex
boundaries being formed as the initial group dis-
solved. Idealized mathematical models of robot
swarms do not predict these phenomena.
Collective behavior in nature often involves

large numbers of independent individuals inter-
acting to produce complex assemblies. Engineered
systems such asDNA-based self-assembly (27) have
replicated this ability in synthesized chemical
systems. We have demonstrated this ability in a
robotic system by creating and programming a
large-scale autonomous swarm to achieve com-
plex global behavior from the cooperation ofmany
limited and noisy individuals. The large-scale
experiments advance our ability to engineer
complex robotic systems. This motivates new
investigations into advanced collective algo-
rithms capable of detectingmalfunctioning robots
and recovering from large-scale external damages,
as well as new robot designs that, like army ants,
can physically attach to each other to form stable
self-assemblages.
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RNA NANOSTRUCTURES

A single-stranded architecture for
cotranscriptional folding of
RNA nanostructures
Cody Geary,1 Paul W. K. Rothemund,2 Ebbe S. Andersen1*

Artificial DNA and RNA structures have been used as scaffolds for a variety of nanoscale
devices. In comparison to DNA structures, RNA structures have been limited in size, but
they also have advantages: RNA can fold during transcription and thus can be genetically
encoded and expressed in cells. We introduce an architecture for designing artificial RNA
structures that fold from a single strand, in which arrays of antiparallel RNA helices
are precisely organized by RNA tertiary motifs and a new type of crossover pattern. We
constructed RNA tiles that assemble into hexagonal lattices and demonstrated that lattices
can be made by annealing and/or cotranscriptional folding. Tiles can be scaled up to
660 nucleotides in length, reaching a size comparable to that of large natural ribozymes.

D
esign methods for DNA (1, 2) and RNA
(3–5) nanostructures have been develop-
ing along parallel lines for more than a
decade. Both allow the generation of a
wide variety of structures, including poly-

gons (6–8), three-dimensional (3D) shapes (9–13),
1D arrays (3, 14), and 2D lattices (15, 16). RNA
structure design lags behind only in the size of
structures created: Whereas RNA designs have
been limited to 50 to 200 nucleotides (nt), DNA
structures up to 45,000 nt have been achieved
(17, 18). The advantage of RNA structures lies in
their greater potential to be cloned, genetically
expressed in large quantities, and used for syn-
thetic biology applications in vivo. DNA nano-
structures built from single strands (19), or
mostly single strands (9), have been synthesized
or even cloned (20), but they variously require
downstream purification or heat annealing, and
none has yet been demonstrated to be folded
isothermally as it is enzymatically produced.
RNA nanostructures have already been cotran-

scriptionally assembled from amixture of numer-
ous strands (12) and expressed in bacterial cells
(21). Even if genetically encoded DNA structures
are eventually achieved, other breakthroughs will
have to bemade, because existing DNAnanostruc-

tures lack the structural resolution and diversity
of RNA tertiary motifs (22), such as kissing-loop
interactions (KLs) (23), and they are currently
unable to match the functional capacity of RNA
to perform tasks such as scaffolding proteins
(21, 24), detecting ligands (25), or releasing small
interfering RNAs in response to stimuli (26). But
despite the potential for expressible RNA struc-
tures, a general architecture for designing them
has yet to be achieved.
We present a method for designing single-

stranded RNA (ssRNA) structures that can fold
either by heat-annealing over mica or by cotran-
scriptional folding. Similar to the previously re-
ported scaffolded DNA origami method (17), our
ssRNA origami architecture is scalable and fol-
lows systematic design rules, in this case based
on 3D modeling of the A-form helix. We dem-
onstrated constructions up to six helices tall and
660 nt in length.We took inspiration frommulti-
stranded DNA double-crossover (DX) molecules
(27) and their use as modular lattice-forming
tiles (16). To turn multistranded DNA tiles into
ssRNA ones, we developed an architecture that
uses hairpins and programmable kissing loops.
To extend the architecture tomore than twohelices,
we introduced a new crossover pattern that we
call a “dovetail seam, for creating arrays of co-
axially stacked helices that are both sequence-
specific and nontopologically linked.
Our design method used 3Dmodeling of RNA

(Fig. 1A) to plan the interconnection of helices
and RNA structural motifs to form compact
structures and lattices (Fig. 1B). Outputs of 3D
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