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Abstract. This paper studies the problem of having mobile robots in
a multi-robot system maintain an estimate of the relative position and
relative orientation of near-by robots in the environment. This problem is
studied in the context of large swarms of simple robots which are capable
of measuring only the distance to near-by robots.
We compare two distributed localization algorithms with different trade-
offs between their computational complexity and their coordination re-
quirements. The first algorithm does not require the robots to coordinate
their motion. It relies on a non-linear least squares based strategy to al-
low robots to compute the relative pose of near-by robots. The second
algorithm borrows tools from distributed computing theory to coordi-
nate which robots must remain stationary and which robots are allowed
to move. This coordination allows the robots to use standard trilater-
ation techniques to compute the relative pose of near-by robots. Both
algorithms are analyzed theoretically and validated through simulations.

1 Introduction

Most tasks which can be performed effectively by a group of robots require the
robots to have some information about the relative positions and orientations
of other nearby robots. For example in flocking [1] robots use the relative ori-
entation of its neighbors to control their own heading and the relative position
of its neighbors to ensure collision avoidance and group cohesion, in formation
control [2] robots control their own position as a function of the relative position
of their neighbors to reach a desired configuration, and in mapping [3] robots use
the relative position and relative orientation of their neighbors to interpret and
fuse the information collected by other robots. However, most of the existing
work on localization requires landmarks with known positions on the environ-
ment, addresses localization of a single robot, requires complex computations,
or relies on expensive sensors. Many environments of interest prevent the use of
landmarks, and in swarm platforms, computation is limited and large or costly
sensors are not available.

We study the problem of having each robot in a multi-robot system compute
the relative pose (position and orientation) of close-by robots relying only on



distance estimates to close-by robots. This paper studies and compares algo-
rithms which are appropriate for large populations of cheap and simple robots.
The algorithms described in this paper are fully distributed, and the compu-
tations performed at each robot rely only on information available in its local
neighborhood. This problem is ongoing, since for any mobile robot, the set of
close-by robots and their relative pose changes throughout the execution.

We consider a general problem formulation which does not require explicit
control over the motions performed by the robots. Specifically, the first algo-
rithm we consider places no restrictions on the motion whatsoever. The second
algorithm coordinates which robots are stationary and which robots are mobile,
rotating robots between these roles in a fair and distributed fashion. This al-
lows composing solutions to this problem with motion-control algorithms and
implement different higher-level behaviors. Furthermore, we study this problem
in a robot swarm setting, which imposes stringent sensor and computational
restrictions on the solutions.

In a typical swarm platform, the communication, computation and sensing
capabilities of individual robots are fairly limited. The communication limita-
tions of the individual robots in a swarm platform rule out any strategy that
requires collecting large amounts of data at hub locations, and yet, the simplic-
ity of the individual robots demand some form of cooperation. Moreover, the
computational constraints of individual robots exclude the possibility of storing
and updating complex models of the world or other robots.

Therefore, to fully exploit the potential of a robot swarm platform, it is
paramount to use decentralized strategies that allow individual robots to coor-
dinate locally to complete global tasks. This is akin to the behavior observed in
swarms of insects, which collectively perform a number of complex tasks which
are unsurmountable by a single individual, all while relying on fairly primitive
forms of local communication.

1.1 Related work

For the most part, existing work on multi-robot localization requires either sta-
tionary landmarks in the environment or the ability for the robots to measure
something other than just the distance to their neighbors. More importantly,
most of the existing localization algorithms are tailored for small groups of ca-
pable robots, and place an emphasis on detailed error models to prevent drift
over time. We briefly describe some of the more relevant works in the paragraphs
below. In contrast, this paper addresses the problem of providing relative local-
ization service for large groups of very simple robots which can only sense the
distance of close-by robots. In this setting drift of the estimates is less of a
concern, since the information is meant to be used for simple position control,
and not to perform path integration over longer time intervals. Concretely our
goal is to allow robots to approximate the relative pose of their neighbors using
only a couple of communication rounds and performing as little computation as
possible.



The problem of localization using distance-only sensors has received a lot of
attention, most of it focusing on landmark- or anchor-based localization. Using
only connectivity information to stationary landmarks with known positions [4],
it is possible to approximate the position of mobile nodes. When distance mea-
surements to the landmarks with known positions are available (for example, via
ultrasound) the Cricket Location-Support System is able to localize mobile nodes
within predefined regions, and extending a similar setup it has been show how
to obtain finer grained position information [5]. The more general case of fixed
stationary landmarks with unknown initial positions has also been considered in
the literature [6, 7].

The robust quadrilaterals algorithm [8], which is based on rigidity theory, is
one of the few landmark-free localization methods that relies only on distance
sensing between robots, and is the closest in spirit to the present work. However,
the robust quadrilaterals algorithm was designed primarily for static sensor net-
works and cannot recover the relative orientation of the robots. More recently,
global optimal solutions to this problem have also been proposed [9] which for-
mulate localization as a weighted least squares estimation problem, and present
algorithms in the same spirit to the first algorithm described in this paper.

There is also a large body of work on the problem of cooperative localiza-
tion. One of the earliest works on cooperative localization [10] required bearing
and (optionally) range-sensors and advocated for an approach where robots are
divided into a group that is allowed to move and use odometry, and another
group which plays the role of stationary landmarks. The work in [11] described
a similar approach using range-sensors but requiring global all-to-all commu-
nication and sensing towards the landmarks. Both of these approaches neglect
the distributed coordination problem of selecting which robots play the role of
stationary beacons and which robots are allowed to move.

In the context of simultaneous localization and mapping, a Monte-Carlo Lo-
calization (MCL) approach shown to boost the accuracy of localization through
cooperation of two or more robots [12]. Extended Kalman-Filters (EKF) have
also been used with a similar effect [13]. Both of these works considered robots
that have sensors capable of measuring the angle and distance to other robots,
as well as sensors to sense the environment.

The MCL and EKF approaches have been subsequently extended and im-
proved in recent works. For example[14] extended the EKF approach described
in [13] to consider weaker forms of sensors, including distance-only sensing,
and [15] described how to reduce the amount of state and communication re-
quired. The computational complexity of the EKF was further reduced in [16],
and a communication-bandwidth aware solution was described in [17]. Similarly
novel techniques to reduce the computational costs of the MCL approach have
been proposed, for example [18] described a clustering technique to minimize
the amount of state and communication required.
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Fig. 1: In a global coordinate system u is pointing right and w is pointing down.
In robot u’s local coordinate system robot pwt

is in front of robot put
, and in

robot w’s local coordinate system robot put
is to the right of robot pwt

.

2 System Model

Let V be a collection of robots deployed in a planar environment. The pose
(aka kinematic state) of robot u ∈ V at time t ∈ R+ is described by a tuple
poseut

= 〈put
, φut
〉 where put

∈ R2 represents the position of robot u at time t,
and φvt ∈ [0, 2π) represents the orientation of robot u at time t. Robots do not
know their position or orientation.

Each robot has its own local coordinate system which changes as a function
of its pose. Specifically, at time t the local coordinate system of robot u has the
origin at its own position put and has the x-axis aligned with its own orientation
φut . All sensing at a robot is recorded in its local coordinate system (cf. Fig 1).

For θ ∈ [0, 2π) let Rθ and ψ(θ) denote rotation matrix of θ and a unit vector of
angle θ. The position of robot w at time t′ in the local coordinate system of robot
u at time t is defined as pwt′ |ut

= R−φut
(pwt′ − put

) =
∥∥pwt′ − put

∥∥ψ(θwt′ |ut
),

and the orientation of robot w at time t′ in the local coordinate system of robot
u at time t is defined as φwt′ |ut = φwt′ −φut . Hence the pose of robot w at time
t′ in the local coordinate system of robot u at time t is described by the tuple
posewt′ |ut

=
〈
pwt′ |ut

, φwt′ |ut

〉
.

The communication graph at time t is a directed graph Gt = (V,Et), where
Et ⊆ V × V as a set of of directed edges such that (u, v) ∈ Et if and only if a
message sent by robot u at time t is received by robot v. The neighbors of robot
u at time t are the set of robots from which u can receive a message at time t,
denoted by Nut

= {v | (v, u) ∈ Et}.
For simplicity and ease of exposition, it is assumed that computation, com-

munication and sensing proceeds in synchronous lock-step rounds {1, 2, . . .}. In
practice synchronizers [19] can be used to simulate perfect synchrony in any par-
tially synchronous system. If robot u receives a message from robot w at round
i then robot u can identify the message originated from w, and estimate the
distance ‖pvi − pwi‖ = di(u,w)∗.

∗Many swarm of platforms, including the Kilobots[20], use the same hardware (i.e.,
infrared transceivers) as a cost-effective way to implement both communication and
sensing.



Robots are capable of using odometry to estimate their pose change between
rounds in their own local coordinate system. Specifically at round j a robot
u ∈ V can estimate its translation change pui |uj with respect to round i < j
and its orientation change φui |uj with respect to round i < j. It is assumed
that odometry estimates are reliable over intervals of two or three rounds (i.e.
i >= j − 3), but suffer from drift over longer time intervals.

2.1 Problem Formulation

Formally, the problem statement requires that at every round i, each robot u
computes the relative pose posewi

|ui
of every neighboring robot w ∈ Nui

. Robots
can only perceive each other through distance sensing. For a robot u to compute
the pose of a neighboring robot w at a particular round, it must rely on the
distance measurements and communication graph in the previous rounds, as
well as the odometry estimates of u and w in previous rounds.

The algorithms considered do not require controlling the motion performed
by each robot; the first algorithm imposes no constraints, and the second algo-
rithm requires only to coordinate when robots can move, but not the motion
they execute. This allows these algorithms to be run concurrently with any mo-
tion control algorithm. Moreover, the algorithms are tailored for large swarms of
simple robots, and as such the size of the messages or the computation require-
ments do not depend on global parameters such as the size or diameter of the
network.

3 Localization without Coordination

This section describes a distributed localization algorithm that requires no mo-
tion coordination between robots and uses minimal communication. Each robot
localizes its neighbors by finding the solution to a system of non-linear equa-
tions. For simplicity, this section assumes that distance sensing and odometry
estimation is perfect (e.g. noiseless); a similar treatment is possible if considering
zero-mean Gaussian noise. Section 5 describes how the results presented here can
be easily extended to handle noisy measurements.

Consider any pair of robots a and b for a contiguous interval of rounds I ⊂ N.
To simplify notation let paj→bk

= pbk
− paj

denote the vector, in the global
coordinate system, that starts at paj

and ends at pbk
.

Observing Fig. 2 it is easy to see that starting at pai
(and in general starting

at any paj for some j < k) there are at least two ways to arrive to pbk
. For

instance, by first traversing a dotted line and then a solid line or vice versa.
Indeed, this holds since by definition for all j ≤ k we have:

paj→ak
+ pak→bk

= paj→bk
= paj→bj

+ pbj→bk
. (1)

For j = k equation (1) is vacuously true and for j < k it represents a con-
straint on the relative pose of robots a and b in terms of quantities that individual
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Fig. 2: Robot a and b in rounds I = {i, . . . , k}.

robots can either sense or compute. Next, we massage the previous equation to
represent a constraint on the relative pose in terms of known quantities.

paj→ak
− pbj→bk

+ pak→bk
= paj→bj

−Rφak
paj |ak

+Rφbk
pbj |bk

+Rφak
pbk
|ak

= Rφaj
pbj |aj

paj |ak
+Rφbk

|ak
pbj |bk

+ pbk
|ak

= Rφaj
−φak

pbj |aj∥∥∥paj
|ak

+Rφbk
|ak
pbj
|bk

+ pbk
|ak

∥∥∥ =
∥∥pbj
|aj

∥∥∥∥∥−paj
|ak

+Rφbk
|ak
pbj
|bk

+ dk(a, b)ψ(θbk
|ak

)
∥∥∥ = dj(a, b) (2)

Dissecting equation (2); dj(a, b) and dk(a, b) are known and correspond to
the estimated distance between robot a and b at round j and k respectively;
paj |ak

and pbj |bk
, are also known, and correspond to the odometry estimates

from round j to round k taken by robot a and b respectively; finally φbk
|ak

and
θbk
|ak

are both unknown and correspond to the relative position and orientation
of robot b at round k in the local coordinate system of robot a at round k.

Considering equation (2) over a series of rounds yields a non-linear system
that, if well-behaved, allows a robot to estimate the relative pose of another.
To avoid an undetermined system we require at least two equations, since there
are two unknowns. In practice we observed that even when the measurements
are noisy, the additional information provided by the overconstrained system
does not provide improvements to merit the additional computational cost, even
when the measurements are noisy.

The following distributed algorithm leverages the constraints captured by a
system of δ ≥ 2 equations to allow every robot to compute the relative pose of
its neighbors.

At each round of Algorithm 1 every robot sends a constant amount of infor-
mation (its odometry measurements for that round) and therefore its message



Algorithm 1 Localization without Coordination
1: for each robot u ∈ V and every round k ∈ {1, . . .} do
2: broadcast

〈
puk−1 |uk , φuk−1 |uk

〉
3: receive

〈
pwk−1 |wk , φwk−1 |wk

〉
for w ∈ Nuk

4: I = {k − δ, k}
5: for each w ∈

⋂
j∈I

Nuj do
6: integrate odometry puj |uk , φuj |uk for j ∈ I
7: find θ̂wk |uk , φ̂wk |uk such that (2) holds ∀j ∈ I
8: posewk |uk ←

〈
dk(u,w)ψ(θ̂wk |uk ), φ̂wk |uk

〉

complexity is O(1). The computational complexity of Algorithm 1 is dominated
by solving the system of non-linear equations (line 7), which can be done by
numerical methods [21] in O(ε−2) where ε is the desired accuracy.

Regardless of the choice of δ there are motion patterns for which any algo-
rithm that does not enforce a very strict motion coordination (which includes
Algorithm 1, which enforces no motion coordination) cannot recover the relative
pose of neighboring robots. These motions are referred to as degenerate, and are
described next (see Fig. 3). First, if during δ rounds two robots follow a linear
trajectory, then the relative pose between these robots can only be recovered
up to a flip ambiguity. Second, if during δ rounds one robot follows a displaced
version of the trajectory followed by another robot, then it is possible to infer the
relative orientation of the robots, but a rotation ambiguity prevents the recovery
of the relative position. A degenerate motion can be a flip ambiguity, a rotation
ambiguity, or a combination of both (cf. Fig 3).
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pui+1

pui+2

pwi

pwi+1

pwi

pwi+1

pwi+2pwi+2

(a) Flip Ambiguity

pui

pui+1

pui+2

pwi

pwi+1

pwi+2

pwi

pwi+1

pwi+2

(b) Rotation Ambiguity
Fig. 3: Due to generate motions yellow (light gray) robot cannot fully resolve the
relative position of green (dark gray) robot.

Fortunately degenerate motions are rare. More precisely degenerate motions
are a set of measure zero (for example, this implies that if the motions are
random, then with probability 1 they are not degenerate). This can be shown



to be a consequence of the generic rigidity of a triangular prism in Euclidean 2-
space, see [22] for a thorough treatment of rigidity. The next theorem formalizes
the properties of the algorithm (all proofs were omitted due to lack of space).

Theorem 1 If at round i, robots u and w have been neighbors for a contiguous
interval of δ or more rounds, and perform non-degenerate motions, then at round
i Algorithm 1 computes posewi |ui at u and poseui |wi at w.

4 Localization with Coordination

This section describes a distributed localization algorithm that uses a simple
stop/move motion coordinate scheme, and requires communication proportional
to the number of neighbors. Using the aforementioned motion coordination
scheme allows robots to compute the relative pose of neighboring robots through
trilateration.

By collecting multiple distance estimates a moving robot can use trilatera-
tion to compute the relative position of a stationary robot; as before standard
techniques can be used to extend this to the case of zero-mean noise, briefly
detailed in Section 5. Two such distance estimates already suffice to allow the
moving robot to compute the relative position of a stationary robot up to a flip
ambiguity (i.e., a reflection along the line that passes through the coordinates
at which the measurements were taken).

puk

puk−1

γwk |uk

αuk

βwk |uk

βwk |uk
θwk |uk

θuk−1 |wk

dk−1(u,w)

dk(u,w)`uk

γwk |uk

pwk = pwk−1

Fig. 4: Moving robot (green/dark gray) uses trilateration to compute the relative
position of stationary robot (yellow/light gray) up to a flip ambiguity.

Consider two neighboring robots u and w where from round k − 1 to round
k robot u moves while robot w remains stationary (see Fig. 4). Robot u can
compute the relative position pwk

|uk
of robot w at round k up to a flip ambiguity,

relying only on the distance measurements to robot w at round k−1 and round k,
and its own odometry for round k. Specifically the cosine law yields the following.



`uk
=
∥∥puk−1 |uk

∥∥ αuk
= ](puk−1 |uk

)

βwk
|uk

= cos−1
(
`2
uk

+ d2
k(u,w)− d2

k−1(u,w)
2`uk

dk(u,w)

)
(3)

γwk
|uk

= cos−1
(
d2
k(u,w) + d2

k−1(u,w)− `2
uk

2dk(u,w)dk−1(u,w)

)
(4)

θwk
|uk

= αuk
∓ βwk

|uk
(5)

θuk
|wk

= θuk−1 |wk
± γwk

|uk
(6)

In order for robot u to fully determine the relative pose of robot w at round
k (ignoring the flip ambiguity) it remains only to compute φwk

|uk
. Observe

that given knowledge of θuk−1 |wk
, robot u can leverage Eq. 6 to compute θuk

|wk

using the correction term γwk
|uk

computed through the cosine law. The following
identity can be leveraged to easily recover φwk

|uk
using θuk

|wk
and θwk

|uk
.

φuk
|wk

= θwk
|uk
− θuk

|wk
+ π (mod 2π) (7)

Summing up, if robot u moves from round k − 1 to round k while robot w
remains stationary, then using dk−1(u,w), dk(u,w) and puk−1 |uk

robot u can
compute the relative position of robot w at time k. If knowledge of θuk−1 |wk

is
available robot u can also compute the relative orientation of robot w at time k.
Both the position and orientation are correct up to a flip ambiguity.

A robot can resolve the flip ambiguity in position and orientation by repeat-
ing the above procedure and checking for consistency of the predicted position
and orientation. We refer to motions which preserve symmetry and therefore
prevent the flip ambiguity from being resolved (for instance, collinear motions)
as degenerate (cf. Fig 5).

pui

pui+1

pui+2

(a) Flip Ambiguity

pui

pui+1

pui+2

(b) Unambiguous
Fig. 5: Moving robot (yellow/light gray) localizing a stationary robot (green/
dark gray) using distance measurements (dashed lines) and odometry (solid ar-
rows).

Observe that the distance measurements between a stationary robot and a
moving robot are invariant to rotations of the moving robot around the sta-



tionary robot (cf. Fig 6). This prevents a stationary robot from recovering the
relative position of a moving neighbor using any number of distance estimates.

However, in order for robot u to recover the orientation of robot w, robot
w —which remains stationary from round k − 1 to round k— must compute
θuk−1 |wk−1 = θuk−1 |wk

and communicate it to robot u by round k.

Fig. 6: Stationary robot (yellow) cannot compute the relative position of the mov-
ing robot (green), since all distance measurements (dashed lines) are invariant
to rotations around the stationary robot.

Therefore, in order to leverage the previous trilateration procedure requires
coordinating the motion of the robots in a manner that gives every robot a chance
to move and ensures that when a robot is moving its neighbors remain stationary.
Formally, a motion-schedule is an algorithm that at each round classifies every
robots as being either mobile or stationary. A motion-schedule is well-formed
if at every round i the set of robots classified as mobile define an independent
set of the communication graph Gi (i.e. no two mobile robots are neighbors).
The length of a motion-schedule is the maximum number of rounds that any
robot must wait before it is classified as mobile. A motion-schedule is valid if it
is well-formed and has finite length.

The validity of a motion-schedule ensures that mobile robots can use tri-
lateration to compute the relative positions of all its neighbors, and having a
motion-schedule of finite length guarantees every robot gets a chance to move.
The next subsection provides a description of a distributed algorithm that pro-
duces a valid motion-schedule. Algorithm 2 describes a distributed localization
algorithm that leverages a valid motion-schedule and trilateration.

At each round of Algorithm 2 every robot sends a message containing its own
odometry estimates and Θuk−1 , which is the set of previous position estimates
(one for each of its neighbor), and therefore its message complexity is O(∆).
Mobile robots use trilateration to compute the relative position and relative
orientation of its neighbors, and when possible stationary robots update the
relative position and orientation of mobile robots using the received odometry
estimates. In either case, the amount of computation spent by Algorithm 2 to
localize each robot is constant.

Theorem 2 (Assuming a valid motion-schedule.) If at round i, robots u and w
have been neighbors for a contiguous set of rounds during which robot u performed
a non-degenerate motion, then at round i Algorithm 2 computes posewi |ui at u.



Algorithm 2 Localization with Coordination
1: Θu0 ← ∅ ∀u ∈ V
2: for each robot u ∈ V and every round k ∈ {1, . . .} do
3: broadcast

〈
puk−1 |uk , φuk−1 |uk , Θuk−1

〉
4: receive

〈
pwk−1 |wk , φwk−1 |wk , Θuk−1

〉
for w ∈ Nuk

5: if state = mobile then
6: Θuk ←

{
θ̂wk |uk through Eq. (4-5)

}
7: φ̂wk |uk ← use Eq. (6-7) ∀w ∈ Nuk

8: use previous state resolve flip in Θuk

9: else
10: update Θuk through φwk−1|wk , pwk−1 |wk

11: ˆposewk
|uk ←

〈
dk(u,w)ψ(θ̂wk |uk ), φ̂wk |uk

〉
∀w ∈ Nuk

12: state ← motion-scheduler
13: if state = mobile then
14: move according to motion-controller
15: else
16: remain stationary

4.1 Motion Scheduling

As a straw-man distributed algorithm that requires no communication and out-
puts a valid motion-schedule, consider an algorithm that assigns a single mobile
robot to each round, in a round robin fashion (i.e. at round i let robot k = i
mod n be mobile and let the remaining n − 1 robots be stationary). Although
the motion-schedule produced by such an algorithm is valid, it is not suited for a
swarm setting, since it exhibits no parallelism and the time required for a robot
to move is linear on the number of robots.

Finding a motion-schedule that maximizes the number of mobile robots at
any particular round is tantamount to finding a maximum independent set
(aka MaxIS) of the communication graph, which is NP-hard. Similarly, finding
a motion-schedule with minimal length implies finding a vertex-coloring with
fewest colors of the communication graph, which is also NP-hard.

Algorithm 3 describes a motion-schedule with the more modest property of
having the set of moving robots at each round define a maximal independent
set (aka MIS) of the communication graph. Once a robot is classified as being
mobile, it does not participate on subsequent MIS computations, until each of
its neighbors has also been classified as mobile. Given these properties, it is not
hard to show that for any robot u and a round k, the number of rounds until
robot u is classified as mobile is bounded by the number of neighbors of robot
u at round k.

Theorem 3 Algorithm 3 defines a valid motion-schedule with length ∆+ 1.

The description of Algorithm 3 utilizes a distributed MIS algorithm as a
subroutine (line 4 in the pseudo-code). However, it should be noted that the



Algorithm 3 Motion-Scheduler
1: if ∀w ∈ Nu statew = inactive then
2: stateu ← compete
3: if stateu = compete then
4: if u is selected in distributed MIS then
5: stateu ← inactive
6: output mobile
7: output stationary

problem of finding an MIS with a distributed algorithm is a fundamental sym-
metry breaking problem and is far from trivial. Fortunately, the MIS problem
has been studied extensively by the distributed computing community, and ex-
tremely efficient solutions have been proposed under a variety of communication
models [23–25]. The classic solution [23] requires O(logn) communication rounds
and every node uses a total of O(logn) [26] bits of communication. For a wire-
less network settings, it is known [24] how to find an MIS exchanging at most
O(log∗ n)† bits. Due to lack of space, for the purposes of this paper it should
suffice to know that it is possible to implement a distributed MIS protocol in
the lower communication layers without significant overhead.

5 Algorithm Evaluation

This section evaluates the performance of the proposed localization algorithms
considering that both the distance measurements and the odometry estimates
are subject to noise. We use a simulator environment tailored to closely resemble
the physical characteristics of the Kilobot swarm platform.

Specifically we assume the distance measurements of each robot are subject
to independent zero-mean Gaussian noise with variance σd and the odometry
estimates is subject to two independent sources of noise; the orientation compo-
nent is subject to zero-mean Guassian noise with variance σφ, and the transla-
tion component is subject to a two-dimensional symmetric zero-mean Guassian
noise with variance σxy. We do not use the standard noise assumptions on the
odometry model, since our odometry model is modeling the noise present in
the external overhead computer vision system used to provide odometry on the
Kilobot swarm platform (the stick-slip locomotion used by the Kilobot swarm
produces movements that depend on the imperfections of the surface underneath
each robot, so they cannot have odometry built-in).

Algorithm 1 relied on finding a zero in a non-linear system of equations con-
structed using the distance estimates and odometry estimates pertinent to that
robot. When these estimates are subject to noise, the corresponding non-linear
†The iterated logarithm function counts the number of times the logarithm is ap-

plied to the argument before the result is less or equal to 1. It is an extremely slowly
growing function, for instance the iterated logarithm of the number of atoms in the
universe is less than 5.



system is no longer guaranteed to have a zero. To cope with noisy measurements
it suffices to instead look for the point that minimizes the mean-squared error.
This incurs in no additional computational overhead, since it can be accom-
plished using the same numerical methods used in the noiseless case.

The length of each simulation trial is 20 rounds of 6 second (2 minutes). A
total of 50 trials were carried out for each different combination of noise param-
eters. In each trial, 20 robots are deployed randomly in a region of 10m× 10m,
and at each round each robot is allowed to perform a motion with a random ori-
entation change between [−π/4, π/4] and a translation change which is normally
distributed with a mean of 3m and a variance of 0.5m. The length of each trial
is 20 rounds of 6 second (2 minutes). The plots below (cf. Figs 7 and 8) show
the mean squared error (MSE) in the computed position (blue) and orientation
(red) over 50 random trials for various different noise parameters. Since to ini-
tialize the position and orientation estimates Algorithm 2 requires at least three
rounds, the first three rounds of every trial were discarded.
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Fig. 7: Each plot shows MSE of the position (blue) and orientation (red) as a
function of one component of the variance Σ. The vertical axis goes from 0 to
π. From left to right, each column shows the MSE as a function of σd, σo and
σx,y. The top row shows the results with δ = 2 and the bottom row for δ = 3.

Not surprisingly the results produced by Algorithm 1 are sensitive to errors in
all axis, although it is slightly more robust to errors in the translation odometry
than in the distance sensing. Furthermore, the relative orientation estimate was
consistently more tolerant to noise than the position estimate. As it would be



expected, for all the different noise settings, increasing the parameter δ from 2
to 3 consistently reduced the MSE in both position and orientation produced
by Algorithm 1. However, increasing δ also increases the computational costs of
the algorithm and only gives diminishing returns.

Algorithm 2 is evaluated with the same parameters as Algorithm 1 with
one exception; to keep the number of motions per trial for Algorithm 1 and
Algorithm 2 roughly the same, the length of the trial was doubled to 40 rounds,
since at each round, for every pair of nodes, only one of them will be mobile and
the other will remain stationary.
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Fig. 8: Plots show MSE of the position (blue) and orientation (red) as a function
of one component of the variance Σ. The vertical axis goes from 0 to π. From
left to right, each column shows the MSE as a function of σd, σo and σx,y.

The pose estimates produced by Algorithm 2 are for the most part equally af-
fected by noise in either of the dimension. As it was the case with Algorithm 1,
the relative orientation estimate was consistently more tolerant to noise than
the position estimate. Overall compared to Algorithm 1, the results show that
Algorithm 2 is in all respects less sensitive to noise. This, together with its com-
putational simplicity, make it more suitable for implementation on the Kilobot
platform.

5.1 Motion Control and Localization

Here we explore the feasibility of composing existing motion control algorithms
with the proposed localization algorithms. For its simplicity we consider the
canonical problem of flocking [1]. Informally, flocking describes an emergent be-
havior of a collection of agents with no central coordination that move cohesively
despite having no common a priori sense of direction.

Flocking behavior has received a lot of attention in the scientific community.
Vicsek et al. [27] studied flocking from a physics perspective through simula-
tions and focused on the emergence of alignment in self-driven particle systems.
Flocking has also been studied from a control theoretic perspective, for example
in [28, 29], where the emphasis is on the robustness of the eventual alignment
process despite the local and unpredictable nature of the communication.



We study a flocking behavior where each robot aligns its heading with its
neighbors and avoids colliding with close by neighbors. Namely, at each round
every robot steers its own orientation to the average orientation of its neighbors,
adjusting its speed to avoid getting to close to any of its neighbors. It has been
shown [28, 29] that under very mild assumptions this converges to a state where
all robots share the same orientation.

Fig. 9 shows the results of the described average-based flocking algorithm
when combined with Algorithm 1 to provide relative orientation estimates. Ini-
tially the first rounds the robots move erratically while the position and orien-
tation estimates are initialized, and soon after the orientations of all the robots
converge. Increasing the error in the distance sensing and odometry measure-
ments is translated in greater inaccuracy in the resulting relative orientation
estimates, which affects the resulting flocking state.

Fig. 9: Final configuration of 6 robots after four 40 round runs of a flocking
algorithm composed with Algorithm 1. From left to right the variance of all
noise parameters was increased with same starting configuration.

Before the swarm reaches the steady state the distance measurements can
be used to localize, and localization becomes impossible only when adjustments
are no longer needed and the swarm is in steady state.

6 Conclusions and Future Work

We considered two distributed algorithms to solve the relative localization prob-
lem tailored for swarms of simple robots. The algorithms have different communi-
cation and computational requirements, as well as different robustness to sensing
errors. Specifically, having greater communication and coordination allows us to
reduce the required computational complexity and increase the robustness to
sensing errors. In future work, we hope to further study whether this trade-off
is inherent to the problem or not.

We are currently implementing the described algorithms on the Kilobot
swarm platform. The Kilobot platform has no floating point unit and limited
program memory (30k), as well as very limited bandwidth (24 bytes per second).
Thus, even simple algorithms require careful tunning and optimization of all pa-
rameters in order to be implemented on the Kilobots. We are also investigating
algorithms with fewer communication requirements.
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