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Abstract

Commercially available depth sensing devices are pri-
marily designed for domains that are either macroscopic,
or static. We develop a solution for fast microscale 3D re-
construction, using off-the-shelf components. By the addi-
tion of lenses, precise calibration of camera internals and
positioning, and development of bespoke software, we turn
an infrared depth sensor designed for human-scale motion
and object detection into a device with mm-level accuracy
capable of recording at up to 30Hz.

1. Introduction
Mound-building termites create complex structures sev-

eral meters tall, through the decentralized actions of mil-
lions of millimeter-scale insects. These systems provide a
striking example of emergent behavior, where the indepen-
dent actions of limited agents with local information give
rise to sophisticated collective results. An understanding of
how low-level termite behaviours result in high-level colony
outcomes could help us understand the functioning of many
natural systems, as well as elucidating design principles
useful in creating artificial distributed systems. However,
a limiting factor in this undertaking is a lack of data on low-
level termite construction behavior.

Recent advances in tracking technology [13, 18] have
provided behavioral data in unprecedented detail and al-
lowed novel insights [11]. Adapting such approaches to
the case of construction by termites has likewise begun to
provide new understanding [5], but faces distinct challenges
that follow from the problem domain. In particular, tracking
termite building activity involves tracking the movement of
soil pellets created and manipulated by the termites. This is
difficult to do visually, because of the lack of contrast be-
tween soil pellets and the soil background. The size and
quantity of pellets created is also highly variable. A track-
ing rig incorporating 3D scanning technology would be par-
ticularly well suited to detecting and recording topographic
changes in a soil substrate, enabling us to identify and dis-

ambiguate construction from the termites themselves.
No existing 3D technology is well-suited to this domain,

which requires high precision and high speed. Precise depth
scanning is time-consuming, often on the order of minutes
for even small objects [10, 20], and therefore usually re-
stricted to low-speed or fixed scenes [14, 15]. Fast recon-
struction is utilized mainly in robotic applications which re-
quire lower accuracy, such as navigation or gesture recogni-
tion [8, 22, 16]. In this paper, we adapt off-the-shelf equip-
ment to achieve a system suited for tracking termite activity
at high speeds.

1.1. Requirements

To resolve termites and their micro-build structure in
three dimensions, we require the following features:

Spatial resolution 1mm in all dimensions
Individual build ‘pellets’ of the large termite genus
Macrotermes are usually between 0.5mm and 1.5mm in di-
ameter. To examine small-scale build structure, we need to
be able to identify activity at the pellet level.

Lightweight, robust, and easily transportable
Our experiments on Macrotermes are carried out at a field
station in northern Namibia; equipment needs to be portable
and capable of surviving in hold or hand baggage.

Capable of synchronized depth and RGB images
To extract soil movement and deposition, we need to be able
to identify termites apart from built structures. This is most
easily done using RGB channels, so a frame-synchronized
RGB camera that can be triggered together with the depth
camera is desirable, and any signals emitted by the depth
system should not affect the RGB image.

Capable of recording at 1Hz or greater
The time between extraction and deposition can be on the
order of seconds. With multiple termites working on the
same site, build activity can proceed very quickly once be-
gun, and to capture individual depositions we require a new
depth scan to be completed at minimum once per second.
Ideally, the same sensor system should be used to track both
termites and soil movement. This streamlines the equip-



ment necessary, and simplifies the hardware setup — but
requires recording RGB at 25Hz or more.

Close-range
Whether integrated with the depth scanning system or inde-
pendently synchronized, the desired high-resolution RGB
recording needs to originate close enough to identify indi-
vidual termites, without obscuring the view of the arena in
the depth scanning device. The experimental procedure ne-
cessitates that the termites be enclosed within a small air
volume, requiring either a short distance between scanner
and arena, or a cover, which may accumulate condensation
and interfere with depth scanning. Moreover, if a fixed sen-
sor is used, the best scanning angle is vertically above the
arena. These considerations constrain the possible geomet-
ric arrangement of the combined depth/RGB system, and
the simplest solution is to have both devices on the same
plane, directly above the arena. Note that for all 3D scan-
ning systems, depth accuracy degrades with distance.

Customizable software capable of long recording of
high-speed, high-resolution data
Many commercial depth sensors require proprietary soft-
ware, which may not be modifiable. The device software
must either fulfill all requirements off-the-shelf (including
external triggering, if necessary), or be easily customizable,
or have an open API, allowing us to write our own software
for frame capture and synchronization.

Of the available technology, stereo RGB systems are
not well-suited to near-homogeneous scenes. Laser scan-
ners are precise, albeit expensive; however cannot realis-
tically meet the <1Hz requirement that is essential to our
reconstruction needs [20]. Fringe projection techniques can
be very precise [21], but integrated fringe projector/camera
systems are not yet available commercially, and are chal-
lenging to implement alongside RGB recording.

Active IR depth sensors are becoming more common as
a low-cost 3D imaging method, are faster than laser devices,
and do not interfere with the visible light spectrum. How-
ever, their depth resolution is typically not as fine, and they
have a more restricted range. Nevertheless, due to the hard
lower boundary on our scanning speeds, we decided to in-
vestigate whether a commercial IR depth sensor could be
adapted to form the basis of a 3D vision system that meets
the requirements listed above.

2. Methods

2.1. System Development

Active IR depth sensing is becoming more widespread,
especially since the advent of low-cost structured light tech-
nology [4]. Amongst commercial systems, the Microsoft
Kinect has established itself as a research standard [6, 23].
However, the optimal range of the Kinect (0.5m-4m) is too

Figure 1. The Intel RealSense (front view), with added lens.

distant for our application: at 512x424 pixels [12], the reso-
lution at even 500mm distance from the camera plane gives
a precision of < 0.5 pixel/mm. For a depth camera sensor
with similar dimensions and field of view to obtain suffi-
cient resolution, the scan distance needs to be < 200mm.

Of the other IR depth sensors on the market, only In-
tel’s RealSense range is designed for such a short range.
In particular, the SR300 is optimized for distances between
200-2000mm. It is also compact, comparatively cheap
($130USD at time of writing), has an open, customisable
API, and with a depth resolution of 640x480 pixels easily
meets the minimum spatial resolution requirements in the x-
y plane at the given minimum distance. The integrated high-
resolution (1920x1080) RGB camera enables easy synchro-
nization of RGB and depth stream recording, without exter-
nal triggering, and the sensor has already successfully been
adapted to difficult novel applications [3]. That said, the re-
ported depth resolution is accurate to “up to 2mm”, which
does not quite meet our requirements.

A structured light sensor projects an infrared pattern onto
the world. This pattern is captured by an IR-sensitive sen-
sor, and compared with an internal representation to esti-
mate the pattern distortion, which in turn can be used to
infer the depth. At close range, the reflected photons may
not be within the field of view of the IR camera, or the pat-
tern becomes too highly distorted for the software to resolve
correctly. Therefore it is unlikely that range limitations in
the hardware can be overcome. However, inaccuracies in
the z-dimension can plausibly be accounted for and mit-
igated by thorough knowledge of the sensor internal pa-
rameters, plus manual compensation for steady-state error
residuals. Given this, the Intel RealSense seemed the opti-
mum candidate for our application. The main challenge was
whether parameterizing and—if necessary—modifying the
device could bring the z-accuracy to the requisite minimum.

2.2. Sensor characterization

Our first priority was to fully characterize the sensor
through a multi-step calibration procedure. This enables us
to identify the sources of inaccuracies in the z-dimension,
and if possible mitigate them. In particular, we sought:

• an accurate knowledge of the camera internals for both



RGB and depth imaging
• an accurate mapping between raw binary disparity val-

ues and distance (over the required range)
• to determine whether reported depths were accurately

returning the ground truth of the 3D scene
• to determine whether remaining errors in the depth es-

timate were stable over time, and could hence be com-
pensated for in the final reconstruction.

To get a maximum value for our eventual x-y resolution,
we tested the lower range bound given by the manufacturer,
and found this to be effectively 100mm, rather than 200mm
as stated. Due to the angle between IR emitter and camera,
portions of the depth image were not usable at this distance;
however, provided a central area was used for the scan, this
presented no problems.

2.2.1 Focal length correction and lens addition

The RGB camera of the RealSense is a fixed-lens system
designed for a range �200mm. As described above, this
distance could be reduced to 100mm without degrading the
depth information, so to maximize resolution and accuracy
in all dimensions we aimed for a working range of 100-
150mm. At these distances, the RGB image was fuzzy (Fig-
ure 2), which could impact accuracy during calibration, and
hinder identification of individual termites. Focal distance
on the RealSense cannot be adjusted, so instead we esti-
mated the effective RGB focal length by observing image
crispness, and calculated the additional lens curvature re-
quired to bring this down to the desired range, using the
following lens equation:
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cal length, f
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is the focal length of the additional rectify-
ing lens, and ✏ is the distance between the optical center
of the two lenses. We conducted a preliminary stereo cali-
bration within the recommended 200-1000mm range, to es-
timate the distance between the RealSense camera facing
and the depth sensor plane. The discrepancy between the
two was roughly 4mm, and the back focal distance of the
existing lens can be calculated at 1.86mm, which gives a
lower bound on ✏ of ⇡ 2.1mm.

We assume a thin adjustment lens placed flush with the
sensor casing, and adopt a conservative value of ✏ = 2.5mm
to calculate the desired focal length of the adjustment lens.
We chose a desired focal length of 135mm—roughly in the
middle of our ideal working range. From Equation (1) we
calculate a desired adjustment lens focal length of 228mm.
Note that the lens is constrained geometrically by the IR
camera and emitter on either side of the RGB camera (Fig-
ure 1), meaning that the overall size of the lens+housing

Figure 2. RealSense RGB camera output without (left) and with
(right) focal correction lens.

could not exceed 20mm in diameter—this limited the avail-
able options among off-the-shelf lenses. A PCX conden-
sor lens with a diameter of 15.6mm and a focal length of
222mm was sourced, significantly improving image crisp-
ness in the working range (Figure 2). This truncation of
the optimum focal length naturally resulted in image blur
at longer distances, so to maintain precision, images used
for the new calibration (with lens) were restricted to a zone
100mm-500mm from the camera.

2.2.2 Calibration of camera internals

Calibration toolboxes for two-camera IR depth-sensing sys-
tems exist ([1, 9]), but have been designed with the Kinect
in mind. They usually involve simultaneously optimizing
all depth/camera parameters using an external fixed camera
to establish a ground truth via stereo RGB, while measur-
ing raw depth values with the depth camera. Due to differ-
ences in the depth/disparity mapping and information en-
coding between Kinect and RealSense, and the high preci-
sion requirements of our application, these toolboxes were
not well-suited. However, the Intel RealSense SDK pro-
vides access to the raw IR stream from the depth camera,
allowing us to de-couple the calibration process, similar to
the method described in [19]. We take a standard stereo
calibration approach [17], using the raw IR camera stream
and the RGB camera, which returns an accurate measure
of both camera internals, the transformation between them,
and the three-dimensional location of a flat calibration grid
in a reference frame co-located with the depth camera. The
depth/disparity can then be calculated independently of the
depth camera internals. Note that printer ink can refract IR
light, so the color value of the dark blocks on the calibra-
tion grid was chosen to ensure maximum possible contrast
without loss of depth data.

The stereo camera calibration was conducted with the
assistance of the Caltech Matlab camera calibration toolbox
[2]. The short baseline between IR and RGB cameras is
suboptimal for stereo calibration, hence it was necessary to
use a high number of images, and ensure significant angular
range representation in the calibration plate.

Table 1 gives sensor-specific values for the camera in-
trinsic parameters of one RealSense: fc (pixel-based fo-



Par. Manufacturer Our calibration
fc

D

[475.63, 475.63] [480.13, 479.72] ± [1.24, 1.23]
cc

D

[311.13, 245.87] [311.36, 250.10] ± [1.42, 0.95]
kc

D

r [-0.140, -0.024, 0.017] [-0.120, -0.030, 0] ± [0.004, 0.009, 0]
kc

D

t [-0.0023, -0.0003] [0.0022 0.0018] ± [0.0004, 0.0006]
om [0.0047 , 0.0010, 0.0042] [0.0197, 0.0033, 0.0045] ±

[0.0016, 0.0028, 0.0002]
t (mm) [25.7, -0.162, 3.95] [24.21, 0.356, -0.899] ±

[0.0246, 0.0231, 0.1142]
a0 0 -8.59 ± 0.365
a1 0.125 0.143 ± 0.00025

Table 1. Comparison between manufacturer-supplied data and our
re-calibrated estimates of intrinsic parameters, inter-camera trans-
formation parameters, and depth-disparity mapping.

Figure 3. Depth values calculated using a calibration plate vs the
raw disparity values from the IR sensor. Left: fit for all data (ex-
cluding images with a highly angled calibration plate). Right: fit
for only plate scans at <200mm depth.

cal length), cc (principal point), kc (image distortion co-
efficients), and as an estimate of the frame transformation
between the IR and RGB cameras. As with most modern
cameras, the skew coefficient ↵c is found to be zero or neg-
ligible in both depth and RGB.

These parameter estimates were noticeably distinct from
the generalized values available from the manufacturer.
Note the values in Table 1 are representative only; each sen-
sor must be independently calibrated before use – but these
calibration values are stable over the life of the sensor).

2.2.3 Estimation of depth/disparity mapping

We can now establish a ground truth to use for
depth/disparity mapping. Again, while an estimate for this
mapping is available from the manufacturer, it is not specific
to the individual sensor. To eliminate potential confound-
ing errors from imperfect homography estimations, we re-
stricted the depth images used for estimating this mapping
to those where the angle of the plate was close to parallel
with the sensor plane.

Unlike the Kinect [9] (and contrary to the values in the
the RealSense manufacturer data), the depth/disparity map-
ping is slightly nonlinear even at ranges of <500mm (Fig-
ure 3), however by restricting the data to our expected ex-
perimental working range (<200mm) we find a linear fit is
highly robust. For larger working ranges, the use of a non-
linear mapping may be preferable.

Via linear regression, we obtain coefficients (a0, a1):

z(i, j) = a1d(i, j) + a0 � �(i, j) (2)

where z is the depth coordinate of a pixel at (i, j), in mm, d
is the disparity registered at those pixel coordinates, and � is
an adjustment factor based on the residual error, dependent
on pixel location within the image (see Figure 9, Results).
Over short ranges, � is highly stable, and hence can be ap-
proximated by a matrix of scalar constants (as is also true
in the Kinect, see [9]). The coefficient values a0, a1 for a
single SR300 depth sensor can be seen in Table 1.

We obtained a value for � by averaging the residual er-
ror in the depth data from scans of an orthogonal flat plate
at known depths, restricted to a short distance within our
intended working range (100-150mm). Note that at longer
ranges, a new estimation of residual error is likely to be nec-
essary, and the assumptions of � constancy may not hold.

2.3. Rectification

To usefully visualize termite building activity, we need to
rectify the depth scan to eliminate any rotation or translation
introduced by the offset between the depth camera plane
and the baseline plane of the arena of activity under study.
We can construct a transformation between the RGB camera
frame and the depth frame:
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where x
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are the 3-dimensional positions of a point
in the depth frame and RGB frame, respectively. To rectify
the depth image, a calibration grid is placed at the ground-
frame or base of the arena. The transformation between grid
and camera plane is calculated using planar homography
from the grid corners, and given by T
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For each pixel p

i,j

in the depth scan, we use Equation
(2) to calculate the depth in mm, resulting in a pixel-depth
representation p

0(i, j) = [i, j, z
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(i, j)]. We calculate the
normalized planar position x
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where cc, fc are the camera internal parameters found pre-
viously. We use the Oulu distortion model, as described
in [7] and seen in the Caltech toolbox [2], to compen-
sate for the radial and tangential distortion encapsulated in
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Using Equation (3), and the known transformation be-
tween color camera and plate T

P

C

, it is straightforward to
rectify these coordinates such that the plane of interest of
the scan is aligned with the depth camera plane:
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Note that the z-component of the vector x
D

thus measures
the height offset from the arena baseline plane, rather than
distance from the camera plane.

2.4. Experimental Procedure

To record controlled build experiments, we required a
fixed sensor at a known location, and consistent lighting
with high attenuation in the IR spectrum. The experi-
ment arena shown in Figure 4 was lit by two 550 lumen
desklamps on opposite sides of the dish, using the coolest
color temperature available (6500K), and enveloped in a
diffuser to eliminate shadows. The sensor was fixed using
a laser-cut 3D box with inserted supports, and the substrate
was placed centrally within the dish, directly on top of a cal-
ibration grid (to ensure accurate reconstruction of the sub-
strate baseline). We tested whether the sensor could accu-
rately scan the build material (soil from a termite mound),
the termites themselves, and whether the substrate provided
(usually an off-the-shelf petri dish) interfered with with the
IR pattern projection or detection1.

Neither termites nor soil showed significant interference
with the sensor pattern. Petri dishes of plastic or glass re-
flect/refract IR wavelengths; however, since the interference
is largely confined to the vertical rim of the dish, we simply
ignored depth data at or beyond the dish rim.

The RealSense API provides an extensive array of high-
level functions, and can record (compressed) RGB and IR
frames using its native .rssdk format, but there is presently
no way of guaranteeing the frames recorded are precisely
synchronized. Instead, the Linux RealSense drivers were

1This paper has supplementary material available, provided by the au-
thors. This includes sample scans of dish and 3D printed material, images
of termite construction in RGB and depth, videos of the build process with
termites removed, and a readme file.

used to create a custom C++ interface for recording se-
quential frames in RGB and depth, synchronously or asyn-
chronously, at any framerate up to 30fps (the maximum
possible for high-resolution RGB with the current SR300).
For high-speed recordings, hardware requirements were
>3GHz processor, USB3.0 connector, 4th or 5th generation
Intel processor, and 500GB+ memory – at lower framerates,
a 2.5GHz processor will suffice.

Using this arrangement, we recorded termite early build
experiments with Macrotermes michaelensi, at the Cheetah
View Research Field Station near Otjiwarongo, Namibia.

2.5. Build Reconstruction

This system seeks to simultaneously track termites, and
reconstruct mm-level soil deposits and excavations left by
termite activity. Hence, we desire a 3D timeline of soil
movement sans termites as well as high-resolution RGB
frames for tracking.

To eliminate insects from the 3D depth scans, we first
identified the locations of the termites in the RGB frame
using color, hue and saturation-based image segmentation,
as seen in Figure 5. The termite centroids were then repro-
jected into the depth camera image plane.

From the calibration plate placed under the termite arena,
we know the distance between the arena baseline and the
RGB camera plane, the soil depth at initialization, and the

Figure 4. Laser cut experimental box with cool-temperature high-
lumen lighting setup (not pictured: light diffusion tent).

Figure 5. Left: High-resolution RGB image of petri dish, soil and
termites. Right: Automatic termite detection based on image seg-
mentation.



mean termite height. We can then produce an estimate of
the 3D coordinates of each termite centroid in the RGB
camera frame, as follows:
Let t

k

= (ic
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, j
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) be a termite centroid location. We nor-
malize this position:
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then un-distort the set of normalized pixel coordinates {t0
k

}
using the known radial and tangential distortions kc

RGB

,
as previously, to produce the set of undistorted pixel coor-
dinates {tu
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}. The 3D termite coordinates are then:
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is the distance between arena
baseline and camera plane, �
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is estimated soil height and
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h

is mean termite height. The height of the soil around any
particular termite location can be updated over the course
of a build by projecting the mean height of the soil in the
corresponding location in the depth scan back into the RGB
camera frame, thus ensuring the estimate does not deviate
too far from the reality. The 3D termite centroid is trans-
formed into the depth camera frame using the known rota-
tion and translation between cameras:
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These coordinates are converted to a 2D pixel representa-
tion using the inverse of the pixel-3D projection method.
Calculate the corresponding depth pixel coordinates du
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Then we incorporate the distortion model of the depth cam-
era established by the stereo calibration, as before [7]. The
depth pixel coordinates can be calculated from the lens-
distorted coordinates (x0

k,D

, y

0
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) and internal parameters
of the depth camera:
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An example of reprojected termite centroid locations is
shown in Figure 6 (left).

Within the depth scan, we isolate a circular re-
gion around each centroid and apply a binary height-
thresholding filter to find contiguous pixel regions {pt}

k

with a high probability of representing a termite. Let each

Figure 6. Left: A rectified depth scan, corrected for residual er-
ror, with the reprojected termite centroids indicated by the red cir-
cles o. Steady-state noise effects, perhaps due to reflection from
the petri dish, are observable on the lower right of the dish arena.
Right: the same depth image with termites digitally removed.
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where r
d

is a suitable region-of-interest radius (in this case,
approximately half the average termite length in pixels, as
registered in a depth frame at a distance of 13cm). We then
take an average depth value z̄

k

over the total number of pix-
els n within the region:
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where D
k

represents a contiguous region identified with ter-
mite t

k

and � is a heuristic threshold dependent on insect
physiology and sensor noise levels (we found � = 0.3mm
provided a good result for Macrotermes). Figure 6 (right)
shows the same depth scan, with termite-identified regions
removed. This is an aggressive removal strategy, as false
positives are less problematic than false negatives.

To reconstruct the build, we subtract the depth values of
each frame from the preceding. Pixels with depth changes
above a noise threshold � (� = ±0.2mm) are replaced with
the updated frame value iff a) they are not likely to be part
of a termite and b) they remain unchanged for a period of
m frames following the current frame under analysis. The
latter condition eliminates changes due to false negatives in
the termite detection, which may occur when the built ter-
rain becomes uneven – this is effectively a simplified per-
sistence filter, [24], as follows:
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where B represents the set of pixels that retain their new
depth value across the persistence filter time window. These



True depth Manufacturer Our calibration

z

p

0 19.07 0.05

�z 8.0 6.12 7.97
10.00 7.50 10.22
24.0 17.09 24.32

19.50 13.73 19.53

Table 2. Comparison of true height, height estimation using manu-
facturer’s parameters, and height estimation using our recalibrated
parameters. Due to the manufacturer assumption of ↵0 = 0, their
baseplate depth estimate (zp) is significantly erroneous. Hence, to
more clearly show discrepancies, �z gives the height of selected
points from the baseplate value, ie �z = z � zp. The comparison
points used correspond to (1), (2), (3), (4) in Figure 7.

are assumed to be non-transient features and are retained in
the reconstructed depth frame f

n

. The remaining pixels are
assumed invariant from frame n� 1 to n. Effectively, each
pixel in the filtered frame represents the ‘last known’ state
of the build progression. A low-pass temporal smoothing
filter mitigates remaining edge effects or transient pixels,
and frame-averaged background subtraction taken before
excavation/building has begun can be used to remove fea-
tures not created or modified by the termites, such as imper-
fections in the soil substrate, or steady-state noise effects.

3. Results

By the methods above, we successfully resolved fine-
scale three-dimensional structures using a low-cost, off-the-
shelf IR-RGB sensor, up to framerates of 30Hz.

To assess the accuracy of our calibration, we created
a 3D calibration block with single-axis symmetry, which
incorporated positive and negative depth changes ranging
from 10mm down to 0.1mm, and x-y features with vary-
ing widths down to 0.5mm. Figure 7 shows a photo of the
3D block (top), and a reconstruction using the depth cam-
era (bottom), with corresponding height points marked on
both. There is some variability in the returned values, likely
due to sensor noise, but depth steps of 0.5(±0.3)mm can be
resolved with confidence, as can features � 0.5mm in the
x-y plane. A quantitative comparison between the known
plate dimensions, those calculated using manufacturer pa-
rameters, and those calculated using our new, re-calibrated
parameters, is given in Table 2.

The re-calibrated depth and colour images can there-
fore be mapped to each other at a significantly greater ac-
curacy than the manufacturer-provided automapping pro-
vided. Figure 8 shows a remapping of the RGB camera
image into the depth camera frame. The scale on the right
shows the estimated distance from the calibration plate at
the base of the arena. Note that the arena base + soil height
together are roughly 5mm.

Some variance was observed between sensors — for

Figure 7. 3D calibration plate and corresponding depth scan.
Depth has been rectified and projected into a 3D Cartesian plane
coincident with the camera plane, for comparison purposes. Note
that remapping the pixels (i, j) to a smooth surface in (x, y)
causes interpolation smear at discontinuities – this is not an issue
when working in pixel-depth coordinates (i, j, z). Depth shadows
are observable around the plate verticals.

these experiments we fully calibrated three sensors from
two different manufacturing batches, and while the trans-
formation between depth and RGB cameras was similar for
all (within uncertainty bounds) we found significant differ-
ences between cameras in depth-disparity mapping coeffi-
cients (ā0 = 8.303±2.200, ā1 = 0.140±0.010) and resid-
ual errors, as shown in Figure 9.

By applying our more precise calibration values and
using the combined RGB-D information to identify and
project termite locations, we could not only precisely track



Figure 8. A 3D overlay of rectified depth data and RGB image
data, using (top) our updated calibration values for both RGB and
depth cameras, and (bottom) the manufacturer’s values.

individual termites, but also ‘remove’ virtually all termites
from video of the Macrotermes early-stage build process,
leaving us with a high-speed reconstruction of the build ac-
tivity in three dimensions, e.g. Figure 10.

4. Discussion

This paper demonstrates a low-cost, portable, high-
resolution 3D scanning system using off-the-shelf compo-
nents, which can be applied to any close-range application.
The depth sensor can accurately report structural changes
down to 1.0 (±0.3) mm, which compares favorably with
other 3D reconstruction hardware (e.g. laser scanners and

Figure 9. Residual error maps for two RealSense SR300 depth
cameras (while three sensors were calibrated, two came from the
same manufacturing batch, with very similar residual errors).

Figure 10. Snapshots from two small areas of a dish during a long-
term termite build sequence. Left, reconstructed build depth im-
ages with termites removed; right, raw RGB images. Colour scal-
ing has been adjusted to feature size, in order to highlight both
single depositions (green circle/arrow, top image) and larger scale
builds (bottom image). Initial soil height was approximately 5mm
above the baseline (lower values represent excavation).

range-finders). This system is particularly suited for appli-
cations where both high accuracy and high speed are vital,
and it can also, with the aid of extended RGB-D imaging,
filter out objects outside of the domain of inquiry. Com-
bining RGB and depth could also improve reconstruction
precision and tracking accuracy. Preliminary tests suggests
these results may transfer to outdoor reconstruction, poten-
tially providing a low-cost 3D sensing system for the field.

One impediment to domain transferability is the
application-specific adjustments required when reconstruct-
ing depth data (e.g. distance-dependent residual error map-
ping). Particularly for high-precision tasks close to the
camera, approximations that may work sufficiently well at
longer ranges become invalid. However, if the sensor lim-
itations are well-understood and care is taken to reduce or
eliminate potential confounding factors in the experimental
stage, the solution described here is versatile and can be ap-
plied across other domains, such as dynamic deformation of
objects, or precision expression recognition.

Research reported in this publication was supported by the National
Institute Of General Medical Sciences of the National Institutes of Health
under award number R01GM112633. The content is solely the responsi-
bility of the authors and does not necessarily represent the official views of
the National Institutes of Health.
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