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ABSTRACT
Synchronicity is a useful abstraction in many sensor net-
work applications. Communication scheduling, coordinated
duty cycling, and time synchronization can make use of a
synchronicity primitive that achieves a tight alignment of
individual nodes’ firing phases. In this paper we present
the Reachback Firefly Algorithm (RFA), a decentralized syn-
chronicity algorithm implemented on TinyOS-based motes.
Our algorithm is based on a mathematical model that de-
scribes how fireflies and neurons spontaneously synchronize.
Previous work has assumed idealized nodes and not consid-
ered realistic effects of sensor network communication, such
as message delays and loss. Our algorithm accounts for these
effects by allowing nodes to use delayed information from
the past to adjust the future firing phase. We present an
evaluation of RFA that proceeds on three fronts. First, we
prove the convergence of our algorithm in simple cases and
predict the effect of parameter choices. Second, we leverage
the TinyOS simulator to investigate the effects of varying
parameter choice and network topology. Finally, we present
results obtained on an indoor sensor network testbed demon-
strating that our algorithm can synchronize sensor network
devices to within 100 µsec on a real multi-hop topology with
links of varying quality.
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1. INTRODUCTION
Computer scientists have often looked to nature for inspi-

ration. Researchers studying distributed systems have long
envied, and attempted to duplicate, the fault-tolerance and
decentralized control achieved in natural systems. Those of
us studying sensor networks also have every reason to be
envious. Designing software coordinating the output of a
collection of limited devices frequently feels as frustrating
as orchestrating the activity of a colony of stubborn ants, or
guiding a school of uncooperative fish. And yet ant colonies
complete difficult tasks, schools of fish navigate the sea, and
swarms of fireflies stretching for miles can pulse in perfect
unison, all without centralized control or perfect individ-
uals. The spontaneous emergence of synchronicity — for
example, fireflies flashing in unison or cardiac cells firing in
synchrony — has long attracted the attention of biologists,
mathematicians and computer scientists.

Synchronicity is a powerful primitive for sensor networks.
We define synchronicity as the ability to organize simulta-
neous collective action across a sensor network. Synchronic-
ity is not the same as time synchronization: the latter im-
plies that nodes share a common notion of time that can
be mapped back onto a real-world clock, while the former
only requires that nodes agree on a firing period and phase.
The two primitives are complementary: nodes with access
to a common time base can schedule collective action in
the future, and conversely, nodes that can arrange collective
action can establish a meaningful network-wide time base.
However, the two primitives are also independently useful.
For example, nodes within a sensor network may want to
compare the times at which they detected some event. This
task requires a notion of global time, however it does not
require real-time coordination of actions.

Similarly, synchronicity by itself can be extremely useful
as a sensor network coordination primitive. A commonly-
used mechanism for limiting energy use is to carefully sched-
ule node duty cycles so that all nodes in a network (or a por-
tion of the network) will wake up at the same time, sample
their sensors, and relay data along a routing path to the base
station. Coordinated communication scheduling has been
used both at the MAC level [18] and in multi-hop routing
protocols [12] to save energy. Synchronicity can also be used
to coordinate sampling across multiple nodes in a network,
which is especially important in applications with high data
rates. Previous work on seismic analysis of structures [1],
shooter localization [13], and volcanic monitoring [15] could
use such a primitive and avoid the overhead of maintaining
consensus on global time until absolutely necessary.



In this paper, we present a biologically-inspired distributed
synchronicity algorithm implemented on TinyOS motes. This
algorithm is based on a mathematical model originally pro-
posed by Mirollo and Strogatz to explain how neurons and
fireflies spontaneously synchronize [10]. This seminal work
proved that a very simple reactive node behavior would al-
ways converge to produce global synchronicity, irrespective
of the number of nodes and starting times. Recently Lu-
carelli and Wang [8] demonstrated that this result also holds
for multi-hop topologies, an important contribution towards
making the model feasible for sensor networks.

The firefly-inspired synchronization described by Mirollo
and Strogatz has several salient features that make it attrac-
tive for sensor networks. Nodes execute very simple com-
putations and interactions, and maintain no internal state
regarding neighbors or network topology. As a result, the
algorithm robustly adapts to changes such as the loss and
addition of nodes and links [8]. The synchronicity provably
emerges in a completely decentralized manner, without any
explicit leaders and irrespective of the starting state.

However, implementing this approach on wireless sensor
networks still presents significant obstacles. In particular,
the previous theoretical work assumes instantaneous com-
munication between nodes. In real sensor networks, radio
contention and processing latency lead to significant and
unpredictable communication latencies. Earlier work also
assumes non-lossy radio links, identical oscillator frequen-
cies, and arbitrary-precision floating-point arithmetic which
are unrealistic in current sensor networks.

We present the reachback firefly algorithm (RFA) that ac-
counts for communication latencies, by modifying the origi-
nal firefly model to allow nodes to use information from the
past to adjust the future firing phase. We evaluate our al-
gorithm in three ways: theory, simulation and implementa-
tion. We present theoretical results to prove the convergence
of our algorithm in simple cases and predict the impact of
parameter choice. Next we leverage TOSSIM, the TinyOS
simulator, to explore the behavior of the algorithm over a
range of parameter values, varying numbers of nodes, and
different communication topologies. These simulation re-
sults validate the theoretical predictions. Finally, we present
results from experiments on a real sensor network testbed.
These results demonstrate that our algorithm is robust in
the face of real radio effects and node limitations. Our re-
sults show that such a decentralized approach can provide
synchronicity to within 100 µsec on a complex multiple-hop
network with asymmetric and lossy links. To the best of our
knowledge, this work represents the first implementation of
firefly-inspired synchronicity on the MicaZ mote hardware,
and demonstrates the ability of the model to achieve syn-
chronicity given real radio and hardware limitations.

Our paper is organized as follows. Section 2 presents re-
lated work. In Section 3 we present RFA in the context of
the Mirollo and Strogatz model and describe current hard-
ware and radio limitations. Sections 4-7 present our metrics
and theoretical, simulation and experimental results. We
conclude with future work.

2. BACKGROUND AND MOTIVATION
Time synchronization has received a great deal of atten-

tion in the sensor network community. The problem of es-
tablishing a consistent global timebase across a large net-
work, despite message loss and delays, node failures, and lo-

cal clock skew, has proven to be very difficult. As described
in the introduction, our goal is not time synchronization,
but rather synchronicity: the ability for all nodes in the
network to agree on a common period and phase for firing
pulses. Synchronicity can be used to implement time syn-
chronization, although this requires mapping the local firing
cycle to a global clock, which we leave for future work.

2.1 Time Synchronization
A number of protocols have been proposed that allow

wireless sensor nodes to agree on a common global timebase.
Here we briefly describe some of the protocols. In Receiver
Based Synchronization (RBS) [2] a reference node broad-
casts a message and multiple receivers within radio range
can then agree on a common time base by exchanging the
local clock times at which they received the message. This
protocol avoids the uncertainty of transmission delays by
using a single radio message to simultaneously synchronize
multiple receiver nodes, however it does not apply in multi-
hop networks. The TPSN [3] protocol works on multi-hop
networks by constructing a spanning tree and then using
hop-by-hop synchronization along the edges to synchronize
all nodes to the root. They also introduce MAC level times-
tamping to estimate transmission delay. The FTSP proto-
col [9], simplifies the process of multi-hop synchronization
by using periodic floods from an elected root, rather than
maintaining a spanning tree. In the case of root failure,
the system elects a new root node. FTSP also refines the
timestamping process to within microsecond accuracy and
provides a method for estimating clock drift which reduces
the need to synchronize frequently.

Direct comparison of these protocols in terms of synchro-
nization error is difficult, due to the differences in hard-
ware and evaluation methodology. FTSP reports a per-hop
synchronization error of about 1 µsec, although the maxi-
mum pairwise error is over 65 µsec in their testbed. The
mean single-hop synchronization error reported for TPSN is
16.9 µsec, compared to 29.1 µsec for RBS [3]. The dynamics
of these protocols in terms of robustness to topology changes
and node population have not been widely studied.

2.2 Biologically-Inspired Synchronicity
Synchronicity has been observed in large biological swarms

where individuals follow simple coordination strategies. The
canonical example is the synchrony of fireflies observed in
certain parts of southeast Asia [10]. The behavior of these
systems can be modeled as a network of pulse-coupled os-
cillators where each node is an oscillator that periodically
emits a self-generated pulse. Upon observing other oscilla-
tors’ pulses, a node adjusts the phase of its own oscillator
slightly. This simple feedback process results in the nodes
tightly aligning their phases and achieving synchronicity.

Peskin first introduced this model in the context of cardiac
pacemaker cells[11]. Mirollo and Strogatz [10] provide one
of the earliest complete analytical studies of pulse-coupled
oscillator systems. They proved that a fully-connected (all-
to-all) network of N identical pulse-coupled oscillators would
synchronize, for any N and any initial starting times. Re-
cent work by Lucarelli and Wang [8] relaxes the all-to-all
communication assumption. Drawing from recent results in
multi-agent control, they derive a stability result based on
nearest neighbor coupling and show convergence in simu-
lation for static and time varying topologies. Their work



demonstrates that the same simple feedback process works,
even when nodes only observe nearest neighbors and those
neighbors may change over time.

Several groups have proposed using pulse-coupled syn-
chronicity to solve various network problems. Hong and
Scaglione [6, 5] introduce an adaptive distributed time syn-
chronization method for fully-connected Ultra Wideband
(UWB) networks. They use this as a basis for change de-
tection consensus. Wakamiya and Murata [14] propose a
scheme for data fusion in sensor networks where information
collected by sensors is periodically propagated without any
centralized control from the edge of a sensor network to a
base station, using pulse-coupled synchronicity. Wokoma et
al. [17] propose a weakly coupled adaptive gossip protocol for
active networks. Each of these applications clearly demon-
strates the utility of synchronicity as a primitive. However
much of the prior work is evaluated only in simulation and
does not consider real communication delay or loss.

Wireless radios exhibit non-negligible and unpredictable
delays due to channel coding, bit serialization, and (most
importantly) backoff at the MAC layer [3, 9]. In traditional
CSMA MAC schemes, a transmitter will delay a random
interval before initiating transmission once the channel is
clear. Additional random (typically exponential) backoffs
are incurred during channel contention. On the receiving
end, jitter caused by interrupt overhead and packet dese-
rialization leads to additional unpredictable delays. Radio
contention deeply impacts the firefly model. Multiple nodes
attempting to fire simultaneously will be unable to do so by
the very nature of the CSMA algorithm. As nodes achieve
tighter synchronicity, contention will become increasingly
worse as many nodes attempt to transmit simultaneously.
The goal of this paper is to address the limitations of current
communication assumptions and realize a real implementa-
tion of firefly-inspired synchronicity in sensor networks.

3. FIREFLY-INSPIRED SYNCHRONICITY
In this section, we first describe the Mirollo and Strogatz

model and discuss how the theoretical model differs from
practice. Then we present our modified algorithm, which
takes these differences into account.

3.1 Mirollo and Strogatz Model
In the Mirollo and Strogatz (M&S) model, a node acts as

an oscillator with a fixed time period T . Each node has an
internal time or phase t, which starts at zero and increments
at a constant rate until t = T . At this point the node “fires”
(in the case of firefly, flashes) and resets t = 0. Nodes may
start at different times, therefore their internal time (phase)
t is not synchronized.

In the absence of any input from neighbors, a node B
simply fires whenever t = T . If B observes a neighbor firing,
then B reacts by adjusting its phase forward, thus shortening
its own time to fire (Figure 1(a,b)).

The amount of adjustment is determined by the function
f(t), which is called the firing function, and the parameter
ε, which is a small constant < 1. Suppose node B observes a
neighbor fire at t = t′. In response, node B instantaneously
jumps to a new internal time t = t′′, where

t′′ = f−1(f(t′) + ε) (1)

However if t′′ > T , then t = T and the node immediately

fires and resets t = 0. In a biological sense, f(t) can be
thought of as the charge of a capacitor within the neuron or
firefly, which receives a boost of ε whenever a firing event is
observed. Algorithmically, the effect is that a node instan-
taneously increments its phase by ∆(t′) = (t′′ − t′), when it
observes a firing event at t = t′.

The seminal result by Mirollo and Strogatz is that if the
function f is smooth, monotonically increasing, and concave
down, then a set of n nodes will always converge to the same
phase (i.e achieve synchronicity), for any n and any initial
starting times [10]. The simple requirements on f ensure
that a node reacts more strongly to events that occur later
in its time period. One of the limitations of their proof was
that it only held for the case where all n nodes could observe
each others’ firing (all-to-all topology). Recently Lucarelli
and Wang [8] relaxed this condition and proved that this
simple node behavior also results in synchrony in multi-hop
topologies, a prerequisite for use in sensor networks.

3.2 From Theory to Practice
The M&S model has several salient features. The node

algorithm and the communication are very simple. A node
only needs to observe firing events from neighbors — there is
no strength associated with the event or even a need to know
which neighbor reported the event. Individual nodes have no
state other than their internal time. Synchronicity provably
emerges without any explicit leaders and irrespective of the
starting state.

Because of these reasons, the model is particularly at-
tractive as an algorithm for sensor networks. However, the
theoretical results in [10, 8] make several assumptions which
are problematic for wireless sensor networks. These include:

1. When a node fires, its neighbors instantaneously ob-
serve that event.

2. Nodes can instantaneously react by firing.

3. Nodes can compute f and f−1 perfectly using contin-
uous mathematics and can compute instantaneously.

4. All nodes have the same time period T .

5. Nodes observe all events from their neighbors (no loss).

In a wireless setting, a firing event can be implemented as
a node sending a broadcast message to its neighbors indicat-
ing that it fired. However, as mentioned before, nodes expe-
rience an unpredictable delay prior to transmission, based
on channel contention. Thus, when a node A sends out a
firing event message at time t, its neighbor B will not re-
ceive the message until time t + δ where the delay δ is not
known in advance. This violates assumptions 1 and 2. Node
B does not know when the actual firing event occurred and
node B can not react instantaneously to node A’s behavior.
In addition, the best case for the theoretical model — i.e.
all nodes fire simultaneously — constitutes a worst case sce-
nario for channel contention because it creates the potential
for many collisions, resulting in large message delays.

The other assumptions also pose potential problems, though
not quite as problematic as message delays. Computation
accuracy is limited due to the absence of efficient floating
point arithmetic. Sensor nodes exhibit slightly different os-
cillator frequencies. Links between nodes exhibit varying
quality and thus varying levels of message loss. At the same
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Figure 1: The firefly-inspired node algorithm. (a)
A node fires whenever its internal time t is equal to
the default time period T (=100). (b) In the M&S
model, a node responds to neighbors firing (arrows)
by instantaneously incrementing t. (c) In RFA, a
node records the firing events and then responds all
at once at the beginning of the next cycle.

time, real biological systems are known to have such varia-
tions. Therefore not all of the theoretical assumptions may
be important in practice.

3.3 The Reachback Firefly Algorithm (RFA)
In this paper we focus mainly on the issues related to wire-

less communication. We tackle the three problems related
to wireless communication in the following way: (1) We use
low level timestamping to estimate the amount of time a
message was delayed before being broadcast; (2) we modify
the node algorithm and introduce the notion of “reachback”
in which a node reacts to messages from the previous time
period rather than the current time period, and (3) we pre-
emptively stagger messages to avoid worst case wireless con-
tention. Lastly, we use a simple, approximate firing function
that can be computed quickly.

Timestamping Messages. In order to estimate the
delay between when a node “fires” and when the actual
message is transmitted, we use MAC-layer timestamping to
record the MAC delay experienced by a message prior to
transmission. The MAC delay can be measured by an event
triggered by the TinyOS radio stack when the message is
about to be transmitted, and is recorded in the header of
the outgoing message. When a node receives a firing mes-
sage, it uses this information to determine the correct firing
time of the transmitting node by subtracting the MAC delay

from the reception time of the message. This is very similar
to the approach used in time synchronization protocols such
as FTSP [9] to estimate message transmission delays.

The Reachback Response. The timestamping allows a
node B to correctly identify when a neighbor A fired. How-
ever it only receives this information after some delay, and
thus node B can not react instantaneously to node A’s firing.

This causes two problems. First, node B may have already
fired and thus no longer be able to react to node A. This
is especially likely for neighbor firings that occur late in a
node’s time period. Furthermore, messages later in the cycle
are important and have a larger adjustment effect (as a re-
sult of f(t) being concave down). Secondly, as a result of the
delays, a node may receive firing messages out of order. The
effect of applying two firing events is not commutative. Sup-
pose two firings occur at times t1 and t2 (t1 < t2). If a node
learns of the events out of order, it will incorrectly advance
its phase by ∆(t2)+∆(t1) instead of ∆(t1)+∆(t2 +∆(t1)).
Therefore for the algorithm to be correct, a node would need
to undo and redo the adjustments, quickly making the algo-
rithm complicated and unmanageable.

Instead, in order to deal with delayed information, we
introduce the notion of reachback response. In the reachback
response, when a node hears a neighbor fire, it does not
immediately react. Instead, it places the message in a queue,
timestamped with the correct internal time t′ at which the
firing event occurred. When the node reaches time t = T , it
fires. Then it “reaches back in time” by looking at the queue
of messages received during the past period. Based on those
messages, it computes the overall jump and increments t
immediately (Figure 1(c)).

The computation is the same as in the M&S model de-
scribed in Section 3.1; from the point of view of a node,
it is as if it were receiving firing messages instantaneously.
The only difference is that the messages it is receiving are
actually from the previous time period. Thus a node is al-
ways reacting to information that is one time period old. In
Section 4 we present theoretical results to support why the
reachback response still converges.

Example: Here we illustrate how the algorithm works
through an example, shown in Figure 1. We first show how
the M&S model works, i.e. when messages are received in-
stantaneously and the node reacts instantaneously. We then
illustrate the reachback response using the same example.

Let the time period T = 100 time units. Let node B
start at internal time t = 0 and increment t every unit time.
Suppose firing events arrive at absolute times 30, 40 and 70.
Let ∆(t) be some jump function; here we simply pick jump
values for illustration purposes.

In the M&S model, the node reacts as each event arrives,
by causing an instantaneous jump in its internal time. ∆(t)
represents the instantaneous jump at internal time t. When
node B observes a firing at time t = 30, it computes an in-
stantaneous jump of ∆(30) = 5, and sets t = 30 + ∆(30) =
35. Ten more time units from this point on it observes an-
other event. While this event occurred 40 units of time since
the beginning of the cycle, the node perceives it as having
happened at internal time t = 45. The node again computes
an instantaneous jump in internal time t = 45+∆(45) = 55.
After 30 more time units the node B observes another fir-
ing event. At this point t = 85 and the node computes an
instantaneous jump to t = 85 + ∆(85) = 95. After 5 more
time units, t = 100 and node B fires.



It is also possible for the computed t to be larger than 100
(e.g. if ∆(85) = 20 then t = 85 + 20 = 105), in which case
the node sets t = 100, immediately fires, and resets t = 0.

The overall effect is that node B advances its phase (or
shortens its time to fire) by 25 time units. It then continues
to fire with the default time period of T = 100.

Now we use the same example to illustrate the reachback
response. As before, let node B start with t = 0 and incre-
ment t every time unit. When node B receives a message, it
uses the timestamping information to determine when that
message would have been received had there been no delay.
It then places this information in a queue and continues.

When t = 100, node B fires, resets t = 0, and then looks at
the queue. In this example, the queue contains three events
at times 30, 40 and 70. Using the same method described for
M&S, the node computes how much it would have advanced
its phase. Since all of the information already exists, it can
compute the result in one shot. As in the previous case, the
result is that the phase is advanced by 25 time units. Node
B applies this effect by instantaneously jumping from t = 0
to t = 25. It then proceeds as before, firing by default at
t = 100 if no events are received. The difference between
the reachback scheme and the original M&S method is that
the first firing event occurs at different absolute times (100
vs 75). This influences neighboring nodes’ behavior and one
must prove that the new scheme will still converge.

Pre-emptive Message Staggering. CSMA schemes
attempt to avoid channel collisions by causing nodes to back-
off for random intervals prior to message transmission. The
range of this random interval is increased exponentially fol-
lowing each failed transmission attempt, up to a maximum
range. If a small number of nodes are transmitting at any
point in time, then this approach induces low message de-
lays. However, if many nodes are transmitting simultane-
ously, delays may become very large. CSMA works very
well with bursty traffic and non-uniform transmission times.
However, for the M&S algorithm, the communication pat-
tern is very predictable and represents the worst case for
CSMA when many nodes are firing simultaneously.

In order to avoid repeated collisions and control the extent
of message delay, we explicitly add a random transmission
delay to node firing messages at the application level. We
choose the delay uniformly random between 0 and a con-
stant D. In addition, after a node fires, it waits for a grace
period W (where W > D and W � T ) before processing
the queue so that delayed messages from synchronized nodes
are received. In Section 6, we discuss our choices for the pa-
rameter values and show that in practice this works well to
control message delay.

Simplified Firing Function. In order to make the firing
response fast to compute, we chose a simple firing function
f(t) = ln(t). Using equation (1) along with f−1(x) = ex, we
can compute the jump in response to a firing event, which
is ∆(t′) = f−1(f(t′) + ε) − t′ = (eε − 1)t′. To first order
eε = 1 + ε (Taylor expansion), leaving us with a simple way
to calculate the jump.

∆(t′) = εt′ (2)

3.4 Effect of Parameter Choices
The main parameter that affects the behavior of the sys-

tem is ε, which determines the extent to which a node re-
sponds when it observes a neighbor firing. A node responds

to a neighbor by incrementing its phase (shortening its time
to fire) by εt, where t is the internal time at which the event
was observed. Since t < T , the maximum increment a node
could make is εT . Thus if ε = 1/100, then a node can react
to another node by at most T/100.

This gives us an intuitive feel for the effect of ε, which is
made more concrete in the next section. Choosing a larger
epsilon means that a node will take larger jumps in response
to other nodes’ firing, thus achieving synchrony faster. How-
ever if ε is too large, then nodes will “overshoot”, preventing
convergence. Making ε small avoids overshooting but only
at the cost of nodes proceeding slowly towards convergence.
In the next section we prove that the time to synchronize is
proportional to 1/ε, for reasonable values of ε. Later in the
paper we present simulation and testbed results that show
that the system works well over a wide range of ε.

Other parameters such as the time period T and the mes-
sage staggering delay D do not affect the ability to converge,
nor the number of time periods to converge. The goal of D
is to stagger messages within one broadcast neighborhood,
therefore it should exceed network density. The choice of
T affects overhead because it represents the frequency with
which nodes communicate — one can choose that to be ap-
propriate for the application. The main constraint is that
T � D, so that there is enough time for all the messages
from a previous time period to be collected. In the face of
heavy congestion, this inequality may be violated in which
case the delayed firing events can simply be discarded.

For our implementation, we choose T = 1sec and D =
25ms. These choices are somewhat arbitrary; our experi-
mental results suggest that the application layer delay of
25ms works well to eliminate packet loss during synchro-
nized firings for neighborhoods of upto 20 nodes.

4. THEORETICAL ANALYSIS
In this section, we present an analysis of the reachback

scheme for two oscillators. Our analysis follows that of
Mirollo and Strogatz. The ideas and mathematical con-
structs used are similar, though they differ in important
ways that require slightly more complex analysis.

Each oscillator is characterized by a state variable s that
evolves according to s = f(φ) where f is the firing function
and φ is a phase variable representing where the oscillator
is in its cycle. For example, if an oscillator has finished 3/4
of its cycle, then φ = 3/4. Thus φ ∈ [0, 1] and dφ/dt = 1/T
where T is the period of the oscillator’s cycle. We assume
that the function f is monotonic, increasing, and concave
down. For our purposes, we choose f(φ) = ln(φ).

Now consider two oscillators A and B governed by f . They
can be visualized as two points moving along the fixed curve
s = f(φ) at a constant horizontal velocity 1/T , as shown in
Figure 2. When A reaches φ = 1 it will fire, and B will record
the phase at which it hears A’s firing. In the RFA scheme,
unlike the M&S model, B will not jump immediately upon
hearing A’s fire; instead, B will record the time and then
execute the appropriate jump after its next firing. The jump
is defined as ∆(φ) = g(f(φ) + ε) − φ, where g = f−1 and
ε � 1. For example, if B records φ1 as the time A fired,
when B reaches φ = 1 it will fire and then jump forward
to φ = ∆(φ1). In the the RFA scheme, f(φ) = ln(φ) (and
thus g(φ) = eφ), therefore ∆(φ) = (eε − 1)φ. The question
is whether the RFA scheme leads to synchrony.



Figure 2: Two nodes A and B moving along s = f(φ)

Theorem 1. Two oscillators A and B, governed by RFA
dynamics, will be driven to synchrony irrespective of their
initial phases.

Proof. Consider two oscillators A and B. Consider the
moment after A has fired and jumped. In the instant after

the jump, let ~φ = (φA, φB) denote the phases of oscillators

A and B, respectively. The return map R(~φ) is defined to
be the phases of A and B immediately after the next firing
of A (which is necessarily after the next firing of B since A
cannot jump past B1)

We now calculate the return map R(~φ). Without loss
of generality assume φA < φB . Since A has just fired, B
records A’s firing time as φB . Both oscillators move forward
in their cycles until B fires. After B fires, according to our
algorithm, B jumps to phase ∆(φB). In the meanwhile,
A has moved forward a distance 1 − φB , reaching phase
φA +1−φB , and recording this as B’s last firing time. After
A’s next firing, it jumps to ∆(φA + 1 − φB), and B is at
∆(φB)+1−(φA+1−φB) = ∆(φB)+φB−φA. Substitution of
the expression for ∆(φ) and algebraic simplification yields:

~φn+1 = R(~φn) = M~φn +~b (3)

Here n denotes the cycle number. The vector ~b is defined
as (eε − 1, 0), and the matrix M is defined as

M =

[
eε − 1 −(eε − 1)
−1 eε

]
(4)

Hence the algorithm can be described as a linear dynam-

ical system in ~φ, where ~φ ∈ [0, 1] × [0, 1]. The unique fixed
point of this dynamical system is easily shown to be:

~φ∗ =

[
0
1
2

]
(5)

At ~φ∗ both A and B would be exactly half a cycle apart.

We now show that ~φ∗ is unstable (i.e.. a ”repeller”) such
that the phases gets pushed to either (0,0) or (1,1) where
the dynamics no longer change. Introducing the change of

variables ~ϕn = ~φn − ~φ∗ we can rewrite (3) as

1If A fires and then jumps to φA, then φA ≤ φB for the
following reason: If the phase of B is φB when A reaches
φ = 1, then A must have observed B fire at φx ≥ 1 − φB

(since B would have fired and then taken a positive jump).
After firing A takes a jump of φA = ∆(φx). ∆(x) is always
≤ 1− x because it is truncated to never cause a jump past
the end of the cycle. Therefore φA ≤ 1− φx ≤ φB .

Figure 3: Trajectory of the oscillator phases

~ϕn+1 = M ~ϕn (6)

By the eigendecomposition theorem, we can decompose M
as M = V ΛV −1, where V is the matrix of composed eigen-
vectors and Λ is a diagonal matrix containing the eigenvalues
of M . To leading non-vanishing order in ε, the eigenvalues
(in Λ) are λ1 = ε2 and λ2 = (1+ε), and the principal eigendi-
rections (the rows of V −1) are v̄1 = (1, 1) and v̄2 = (0, ε).
The decomposition allows us to rewrite (6) as

~θn+1 = Λ~θn (7)

where ~θn = V −1~ϕn is a change-of-basis transformation
that maps all vectors into a new coordinate system spanned
by the basis B = {v̄1, v̄2}. Equation (7) shows us that the
evolution of the system is most simply described in terms
of B. The system’s evolution along the directions v̄1 and
v̄2 is illustrated in Figure 3. First, all trajectories rapidly
approach the φA = 0 axis along the vector v̄1 = (1, 1)
since λ1 = ε2 � 1. Upon reaching the axis, trajectories

are repelled away from ~φ∗ = (0, 1/2), along the direction
v̄2 = (0, ε), since λ2 > 1. If a trajectory approaches the

axis from below ~φ∗, it will slide down the axis to the state

of synchrony ~φ = (0, 0). Otherwise, it will climb up to
~φ = (0, 1), another state of synchrony. Thus φ∗ is a repeller
and the oscillators are driven to synchrony, irrespective of
initial phases. QED

Rate of synchronization. How quickly the system syn-
chronizes depends on how fast it moves in the v̄2 direc-

tion away from ~φ∗ before it reaches a state of synchrony.
We can estimate the time to synchronization, starting from
~φ(0) = (φ

(0)
A , φ

(0)
B ). Given such an initial state, the system’s

trajectory will intersect the φA = 0 axis at approximately

δ = φ
(0)
B − φ

(0)
A . The distance from the fixed point grows

exponentially fast with eigenvalue λ2 = (1 + ε) in the v̄2

direction. Let k denote the number of iterations required.
Solving λk

2(δ − 1
2
) = 1

2
yields

k =
1

ln(1 + ε)
ln(

1

2δ − 1
) ≈ 1

ε
ln(

1

2δ − 1
) (8)

Thus, the time to synchrony is inversely proportional to ε.



Note that these proofs are very similar to the two os-
cillator case for Mirollo and Strogatz, and most likely can
be extended to n nodes. However extending these results
to multi-hop topologies requires considerably more sophis-
ticated analysis [8]. Instead we evaluate the algorithm in
simulation for different n and network topologies.

5. EVALUATION TOOLS AND METRICS
Both our simulation and testbed experiments output a

series of node IDs and firing times. In order to discuss the
accuracy of the achieved synchronicity, it is necessary to
identify groups of nodes firing together.

For this purpose, we identify sets of node firings that fall
within a prespecified time window. We call each cluster
of node firings a group. Given a time window size w, the
clustering algorithm outputs a series of firing groups that
meet two constraints. First, every node firing event must
fall within exactly one group. Second, groups are chosen to
contain as many firing events as possible.

We define the group spread as the maximum time differ-
ence between any two firings in the group. The time window
size w represents the upper bound on the group spread.

5.1 Evaluation Metrics
The two evaluation metrics that we are concerned with

involve the amount of time until the system achieves syn-
chronicity (if at all), and the accuracy of the achieved syn-
chronicity.

Time To Sync: This is defined as the time that it takes
all nodes to enter into a single group and stay within
that group for 9 out of the last 10 firing iterations.
The value chosen for the time window w does impact
the measured time to sync; a very small w will result
in a time to sync that is longer than with a larger w,
because it takes longer for all nodes to join a firing
group within a smaller time window. Also, as will
be discussed in the next sections, the simulator has
lower time resolution than the testbed hardware which
means there is a limit on the accuracy it can achieve.
Therefore, for the simulator we set w = 0.1sec and in
the real testbed we set w = 0.01sec.

50th and 90th Percentile Group Spread: Recall that
the group spread measures the maximum time differ-
ence between any two events in a firing group. We
wish to characterize the distribution of group spread
for all groups after the system has achieved synchronic-
ity. Although synchronicity may be achieved according
to the time to sync metric above, we wish to avoid mea-
suring group spread while the system is still settling.
Given the first sync time ts and the time the experi-
ment ends te, we calculate the group spread distribu-

tion across all groups in the interval [ts + (te−ts)
2

, te].
In this way we are measuring the distribution across
all “tight” groups rather than settling effects. We plot
the 50th and 90th percentile of the distribution.

Lastly, we define the Firing Function Constant (FFC) to
be the value 1/ε, which is the main parameter in the RFA
algorithm. As discussed in Section 3.4, this parameter limits
the response of a node to be at most T/FFC and thus the
time to synchronize is directly proportional to FFC.

6. SIMULATION RESULTS
We have implemented the Firefly algorithm in TinyOS [4]

using the TOSSIM [7] simulator environment. This simula-
tor has several limitations. It does not model radio delay
correctly, and nor does it take into account clock skew that
occurs from variations in clock crystals in individual wireless
sensors. Despite these limitations, the simulator is useful for
exploring the parameter space of our algorithm. This can
help us determine optimal parameter settings for the algo-
rithm on a real testbed as well as better understand the
impact of the parameter values on the level of synchronic-
ity achieved. In our simulator experiments, we explore the
impact of varying:

1. Node topology: all-to-all where each node can com-
municate with every other node, and a regular grid
topology where a node can directly exchange messages
with at most four other nodes.

2. Firing function constant value: ranging from 10-
1000. Theoretically, the time to synchronize is propor-
tional to the firing function constant value.

3. Number of nodes (n): We examine whether the im-
pact of the firing function constant and node topology
varies with the number of nodes. The size of the all-
to-all topologies is varied between 2-20 nodes with 2
node increments, and grid topologies are varied from
16, 64, to 100 nodes.

All-to-all Topology Results. Figures 4(a) and 5 show
the results of simulations on the all-to-all topology. We
ran simulations for firing function constant values (FFC)
10,20,50,70,100,150,300,500,750 and 1000, repeating this com-
bination for number of nodes ranging from 2-20 in 2 node
increments. For each parameter choice, we ran 10 simu-
lations using different random seeds to start the nodes at
different times. Each experiment was run for 3600 seconds
of simulation time. Also the time period T = 1sec for all
experiments.

Fig. 4(a) shows the percentage of simulations that syn-
chronized for a selection of parameter values. This percent-
age represents the fraction of runs that achieved synchronic-
ity out of the 10 total runs, for a given parameter choice of n
and FFC. We can see that the FFC values displayed in the
figure (70,100,300,500 and 750) are fairly reliable since these
cases achieved synchronicity in a majority of the simulation
runs. Most experiments with small firing function constants
(10,20,50) did not achieve synchronicity. One likely rea-
son for this behavior is that small FFC values lead nodes
to make extremely large jumps, causing them to overshoot
(see Section 3.4).

Fig. 5(a) shows the time to synchronize as a function of
FFC value and the number of nodes. The graph shows that
most FFC constants work well. The time to sync increases
with increasing FFC value but not beyond 400 time periods.
There is no clear trend with increasing numbers of nodes,
although small FFCs do not work as well with large numbers
of nodes. This is possibly because the effect of overshoot is
worsened when there are more neighbors (and thus more
total firing events per cycle to react to).

Fig. 5(b) shows the corresponding group spreads. For
most FFC values and most n, the 90th percentile group
spread remains the same. The 50th percentile shows a slight
increase with increasing FFCs and a slight increase with
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Figure 4: Percentage of simulations that achieved synchronicity for different firing function constants and
numbers of nodes. (a) All-to-all topology. Small firing function constants (E.g. 10,20,50,150) did not achieve
synchronicity most of the time. (b) Grid Topology. Experiments with very small firing function constants
(E.g. FFC=10) or very large firing function constants (E.g. > 500) did not achieve synchronicity.
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percentile. For most FFC values, the group spreads remain similar, with a slight increase as the number of
nodes increases
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Figure 6: Grid Topology. (a) Time to Sync, which increases with increasing FFC values and network diameter.
(b) Group Spread. The solid bars represent the 50th percentile spread, while the error bar indicates the 90th
percentile. Group spread remains similar over varying FFC values, but increases with network diameter. For
large grids, FFC=500 does synchronize as well, as also shown in Figure 4.



increasing numbers of nodes. However, the difference in the
spreads is not large and thus group spreads remain fairly
similar over all parameter values. The error bars for this
data (not shown here) show that there is not much variation
across different experimental runs.

Grid Topology Results. Fig. 4(b) and 6 show the sim-
ulation results for regular grid topologies of 4x4, 8x8, and
10x10 nodes. Fig. 4(a) shows the percentage of cases that
synchronized for a selection of parameter values. The results
show that FFC values in the range of 20-500 almost always
achieve synchronicity in a grid topology.

The behavior of nodes in a grid topology reflects the im-
pact of network diameter on performance. Fig. 6 (a) shows
that large values of the firing function constant increase the
time taken to achieve synchronicity, and that this effect is
more pronounced for larger grids. Larger FFC values im-
ply that nodes make smaller jumps and thus converge to
synchrony more slowly. For a given FFC, the time to sync
also increases slightly with network diameter, but not by
much for the smaller FFC constants. The error bars for the
FFC=500 simulations (not shown here) show that there is
a large variation in time to sync and group spread across
runs, most likely caused by the initial phase distribution of
nodes in the grid which can only be corrected slowly. Bar-
ring that case, Fig. 6 (b) shows that the group spread does
not vary significantly with FFC value. However there does
seem to be an increase in spread (i.e. decrease in accuracy)
for larger grids, indicating that the network diameter may
have an impact on how well the system can synchronize.

7. WIRELESS SENSOR NETWORK
TESTBED EVALUATION

Having proven our algorithm correct in simple cases and
explored the parameter space using TOSSIM, we then tested
RFA on a real sensor network testbed. The experiments
carried out on the 24-node indoor wireless sensor network
testbed, show the performance of our algorithm running on
real hardware, with a complex topology, and experiencing
communication latencies over lossy asymmetric links. The
table in Figure 10 summarizes our results, showing that RFA
can rapidly synchronize all the nodes to approx. 100 µsec.

This section is structured as follows. First, we describe
our testbed environment, focusing on the significant ways in
which the testbed differs from the TinyOS simulator. We
then describe our use of FTSP to provide a common global
time base for nodes participating in our experiments. We
then discuss our experiments and results, and compare them
to our expectation from theory and simulation.

7.1 Testbed Environment
Our experiments ran on MoteLab [16], a wireless sensor

network testbed consisting of 24 MicaZ motes distributed
over one floor of our Computer Science and Electrical En-
gineering building. The MicaZ motes have a 7.3MHz clock.
Each device is attached to a Crossbow MIB600 interface
backchannel board allowing remote reprogramming and data
logging. Messages sent to the nodes’ serial ports are logged
by a central server. Using this data-logging capability, nodes
report their firing times as well as information about firing
messages they observe. This information is then used to
evaluate the performance of our algorithm, as well as better
understand its behavior.

Figure 7: Connectivity Map: The distribution and
connectivity of sensor nodes (detailed image at
http://motelab.eecs.harvard.edu/).

7.1.1 Network Topology
We conducted our experiments on the most densely pop-

ulated floor, with 24 nodes. Statistics on message loss rates
are calculated periodically and tend to vary over time. Ex-
amining the connectivity map and graph shown in Figures
7 and 8, one can see that this is a complex multi-hop topol-
ogy. The layout of the building produces two cliques of
nodes that are connected by high quality links (less than 20%
message loss) and these cliques are connected by only a few
bridge nodes. Further examination of the cliques shows that
a large fraction of the links are asymmetric in quality and
some nodes (e.g. 2, 26) may have no incoming links of good
quality. This type of complex topology is representative of
sensor networks distributed in a complex environment.

7.1.2 Time Stamping with FTSP
In order to evaluate the performance of RFA, we need to

time stamp the firing messages so that we can determine the
accuracy with which the firing phases align. However, this
proved to be difficult in our testbed environment. Unlike
TOSSIM, our sensor nodes do not have access to a global
clock. Furthermore, since they are distributed throughout
the building, there is no single base station that can act as
a global observer and provide a common time base [9]. In
an ironic way, evaluating RFA requires an independent and
accurate implementation of time stamping.

To address this difficulty we deployed the Flooding Time
Synchronization Protocol (FTSP) [9] described in Section
2. FTSP provides nodes access to a stable global clock and
allows them to time stamp events with precisions reported
in the tens of microseconds. We characterized the errors
in FTSP on our MoteLab topology in the following way.
Nodes log all firing messages they hear from other nodes
and the time stamp that FTSP assigned to them. For every
firing message heard by more than two nodes, we compute
the differences between the times that FTSP reported on
each node, taking the maximum difference between any two
stamps. This is only done for messages where FTSP on both
the sender and receiver reported that the nodes were well-
synchronized to the global clock. The cumulative distribu-
tion frequency (CDF) of these errors for all of our testbed
experiments is shown in Figure 9. Note however that the
FTSP errors are only calculated for nodes that are within
one hop of each other, therefore we do not know the error
in FTSP between two arbitrary nodes. Given this caveat,
our results show that FTSP can quickly synchronize nodes
to within one hop errors of tens of microseconds.
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lected during all of our testbed experiments. FTSP
provided the global clock for RFA evaluation.

The use of FTSP as the global clock impacts our experi-
mental results in two ways. First, our results are pessimistic
since their accuracy is limited by the accuracy of time stamp-
ing which is likely to be in the 5-10 µsec range. Secondly,
this prevents us from making an objective comparison of ac-
curacy between FTSP and RFA. In the future, we plan to
use more controlled experimental setups to better evaluate
the accuracy of RFA and compare it to other methods.

7.1.3 Differences From the Simulator
Sensor network devices in a real environment exhibit be-

havior not modeled by TOSSIM. Most significant differences
for our algorithm are (1) communication latencies are un-
predictable and difficult to measure accurately, (2) links are
asymmetric and fluctuate over time, and (3) crystal differ-
ences cause node clocks to tick at different rates. All these
effects make it difficult for a node to know exactly when an-
other node fired, and unlikely that it will hear every firing
message sent by its neighbors.

Paradoxically, our testbed is better than TOSSIM in one
very significant way. The sensor node hardware has a high-
precision clock and high-precision timer components. A
TinyOS component written for our project allows nodes to

both locally time stamp and set timers at µsec level resolu-
tion by multiplexing the SysTime and MicroTimer compo-
nents onto one hardware counter. The simulator TOSSIM
provides 4MHz local time stamping through access to its
internal clock, but no equivalent of the MicroTimer com-
ponent, forcing us to rely on the standard TinyOS Timer

component with its millisecond resolution. This limits the
resolution of the jumps a node can take and therefore the
algorithm achieves only millisecond accuracy in simulation.
As we were using the simulator primarily to explore the
impact of parameter and topology, we felt the lack of preci-
sion this introduced was acceptable. The higher frequency
MicroTimer component is the primary reason that group
spread results from our testbed experiments are much better
than the simulation, which at first would seem surprising.

7.2 Performance Evaluation
The table in Figure 10 summarizes the results from our

experiments. We conducted four experiments with firing
function constants (FFC) 100, 250, 500 1000.

In each of these experiments the network achieves syn-
chronicity. In the case with a FFC of 100, the network
is synchronized within 5 minutes, with a group spread of
131 µsec. As expected from our theoretical and simulation
studies, the time to synchronize increases with larger fir-
ing function constants. The table also shows the 50th and
90th percentile group spread, and Figure 11 plots the group
spread CDFs for each of the four FFCs. As we can see they
are striking similar, aligning with our expectations from the-
ory and simulations that group spread does not depend on
the FFC value.

These results are very encouraging, given the caveats on
our time stamping and the complexity of the testbed envi-
ronment. However, there are also several features which are
still unexplained and we plan to investigate these more in
the future. Here we discuss two examples.

One observation from the CDF plot in Figure 11 is that
there seems to be a limit on the achievable group spread of
around 100 µsec. This could be related to FTSP accuracy,
but it is also affected by clock skew. We expect clock skew
to impact the accuracy of RFA because the M&S model
upon which it is based assumes that nodes agree on a fixed
firing period. However, two perfectly synchronized nodes
will diverge on the very next firing by the amount of drift



FFC constant Time to 50th pct 90th pct Mean group
sync (sec) spread spread std dev

(µsec) (µsec)
100 284.3 131.0 4664.0 410.4
250 343.6 128.0 3605.0 572.2
500 678.1 154.0 30236.0 1327.8
1000 1164.4 132.0 193.0 63.6

Figure 10: Summary of Testbed Results. Four ex-
periments were run on the 24 node testbed, with dif-
ferent firing function constants (where FFC = 1/ε)
As expected, the time to synchronize increases with
FFC. The 50th percentile group spread is similar for
all four experiments.
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Figure 11: CDF of RFA Group Spread. The four
different firing function constants in the testbed ex-
periments produce similar levels of synchronicity.

that exists in their clocks — introducing an error that is on
the order of the crystal accuracy. This causes the nodes to
constantly readjust their phases. Clock skew also impacts
the accuracy indirectly when nodes use the message delay
(measured by the sender’s clock) to adjust their own phase.
In the future we plan to investigate the effects of clock skew
more rigorously and look at alternate models of synchroniza-
tion, such as synchronized clapping, where both frequency
and phase are adjusted.

A second observation arises from looking at the group
spread over time. We observed that even after tight groups
form, occasionally disturbances still occur during the exper-
iment. We refer to these as dispersive events. Figure 12 (a)
shows an example of a dispersive event where the nodes fall
out of phase and the system recovers from this impulse over
the next few firing periods. Figure 12 (b) shows a differ-
ent time course with the occurrence of two dispersive events
which cause the group to spread over approximately 0.1 sec
range. Note that these dispersive events are included in
the data in Table 10 and impact the 90th percentile group
spread. Analysis of the information collected during this ex-
periment showed no clear reason for this spurious firing. It
is unlikely to be caused by the algorithm, since the extent of
dispersion is larger than the maximum jump possible given
the FFC. What is encouraging is that the recovery from the
100 msec range dispersive events takes only a few rounds to
achieve, thus showing that the system can recover quickly

from perturbation. However, a more rigorous instrumenta-
tion and experimentation setup will be required to pinpoint
the causes behind this behavior.

8. COMPARISON TO OTHER METHODS
Compared to algorithms such as RBS, TPSN and FTSP[2,

9, 3], the firefly-inspired algorithm represents a radically
different approach. All of the nodes behave in a simple
and identical manner. There are no special nodes, such as
the root in TPSN or reference node in RBS, that need to
elected. A node does not maintain any per-neighbor or per-
link state; in fact it is completely agnostic to the identity of
its neighbors. The algorithm remains the same even if the
topology is multi-hop. There are no network-level datas-
tructures, such as the spanning tree in TPSN, that must
be re-established in case of topology change. As a result
of these properties, the algorithm is implicitly robust to the
disappearance of nodes and links. Lucarelli et al [8] have
shown that the algorithm works on time-varying topologies;
our testbed results show that the algorithm performs well
even with asymmetric, lossy links. The inherent adaptive
nature of such algorithms is one of the main attractions of
biologically-inspired approaches.

Nevertheless, it is not yet clear whether such an algorithm
will be competitive to algorithms such as TPSN and FTSP,
in terms of accuracy and overhead, and much work remains
to be done. In terms of accuracy, RFA achieves 100 µsec
which is significantly less than the reported 10 µsec accu-
racy of FTSP, although as discussed before it is difficult to
make a clear comparison because of the errors caused by
using FTSP as our evaluation clock. We believe that the
accuracy can be increased to tens of microseconds by elim-
inating errors in our evaluation methodology and by using
a better optimized MAC-layer delay estimation (as used in
FTSP [9]). However beyond that, the accuracy will still be
limited by clock skew, as discussed in Section 7.2. We intend
to investigate models that synchronize both phase and fre-
quency, which would eliminate errors cause by clock skew.
A second shortcoming of RFA is that the communication
overhead is high. In particular, we choose T = 1 sec, unlike
FTSP which has a time period of 30 seconds. Assuming
one could compensate for clock skew, the main limit on T is
the time taken to synchronize from startup. RFA takes ap-
proximately 200 time periods to synchronize on MoteLab,
which is significantly more than the diameter of the net-
work. On the other hand, the system recovers quickly from
small dispersive events. One option would be to use a sim-
ple mechanism, such as an initial flood, to bring all nodes
to within a small phase difference quickly. Then RFA could
operate at a much lower frequency to tighten the accuracy
and maintain synchronicity. A different option is to allow
nodes to asynchronously backoff, or increase, their time pe-
riod in multiples of T depending on whether they observe
many out-of-phase firing events in their neighborhood. Thus
nodes would self-adjust the overhead.

9. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a decentralized algorithm

for synchronicity, based on a mathematical model of syn-
chronicity achieved by biological systems. Our results show
that even though the theoretical models make simplifying
assumptions, this technique still works well and robustly in
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Figure 12: Dispersive events (a) This plot shows the group dynamics for several firing periods following the
effect of one node falling out of sync. Nodes offsets against the average group firing time are plotted with
respect to time. (b) This plot shows a different example, with FFC=1000. After the system has stabilized
there are still two cases where nodes jump out of phase and are re-incorporated into the group.

the face of realistic radio effects and hardware limitations. In
particular, we modified the algorithm to deal with communi-
cation latencies, but it still achieved synchronicity reliably
and showed predictable behavior in relation to parameter
choice. In the future we intend to study in detail how lossy
links, clock skew and topology parameters affect the model.
A detailed study of the robustness of the system will also
help us better understand whether the adaptive and robust
behavior of biological systems can be leveraged to design
robust algorithms for sensor networks.
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