
 http://ijr.sagepub.com/
Robotics Research

The International Journal of

 http://ijr.sagepub.com/content/early/2010/10/12/0278364910384753
The online version of this article can be found at:

DOI: 10.1177/0278364910384753

 published online 13 October 2010The International Journal of Robotics Research
Chih-Han Yu and Radhika Nagpal

A Self-Adaptive Framework for Modular Robots in Dynamic Environment: Theory and Applications

Published by:

 http://www.sagepublications.com

On behalf of:

 Multimedia Archives

 can be found at:The International Journal of Robotics ResearchAdditional services and information for

 http://ijr.sagepub.com/cgi/alertsEmail Alerts:

 http://ijr.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/
http://ijr.sagepub.com/content/early/2010/10/12/0278364910384753
http://www.sagepublications.com
http://www.ijrr.org/
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/

A Self-adaptive Framework for Modular
Robots in a Dynamic Environment:
Theory and Applications

The International Journal of
Robotics Research
00(000) 1–22
©The Author(s) 2010
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364910384753
ijr.sagepub.com

Chih-Han Yu and Radhika Nagpal

Abstract
Biological systems achieve amazing adaptive behavior with local agents that perform simple sensing and actions. This has
recently inspired the control strategies and design principles of modular robots. In this paper, we introduce a distributed
control framework through which modular robots can achieve various self-adaptive tasks. By self-adaptive tasks, we imply
tasks where the modular robot uses its distributed sensors to solve tasks and cope with environment changes. We show that
modular robot self-adaptive tasks can be formulated as distributed constraint maintenance on a networked multi-agent
system such that performing collective self-adaption can be simplified as satisfying local constraints. This formulation
allows us to propose a control framework based on a class of multi-agent algorithms called distributed consensus. We
further generalize this framework to capture a wide range of sensor–actuator networks in different distributed robotic
systems. We prove various theoretical properties of the framework, including its scalability to network diameter and the
number of modules. Based on our theoretical understanding, we demonstrate this framework with various tasks, including
(1) self-adaptive structures that maintain their shapes in changing environments, (2) an adaptive column that can adapt
to external force, and (3) a modular gripper that can manipulate fragile objects. This work provides a deep understanding
of the theoretical properties of distributed consensus-type control and its applications to modular robots.

Keywords
Distributed control, modular robot, distributed robot system, networked robot, bio-inspired multi-agent systems

1. Introduction

In nature, biological systems achieve sophisticated and
scalable group behavior with vast numbers of indepen-
dent agents using simple control strategies, e.g. bird flocks
(Reynolds 1987), fish schools, and multicellular organisms.
Such biological phenomena have inspired the design of sev-
eral distributed multi-agent systems, for example, swarm
robotic systems (Groß et al. 2006), sensor networks (Aky-
ildiz et al. 2002), and modular robots (Rus et al. 2002).
Among these systems, the design of modular robots has
been widely influenced by multicellular behaviors in bio-
logical systems (Pamecha et al. 1996; Rus et al. 2002;
Zykov et al. 2005; Shimizu et al. 2005; Goldstein et al.
2005; Bishop et al. 2005; Lyder et al. 2008; Yu et al.
2008). Each module, like a cell, is an independent and
autonomous component, and all modules need to coordinate
to achieve the assigned task. From a hardware perspective,
the incorporation of modularity into robot design allows a
single modular robot to become a variety of robotic sys-
tems by changing the modules’ connectivity. From a con-
trol perspective, treating each module as an autonomous
individual gives robots the potential to be robust to indi-
vidual module failure and adaptive to sudden environment

change, similar to how multicellular systems achieve these
two characteristics.

Most control strategies for modular robots have only
focused on how modules can collectively achieve static
goals, such as forming a predetermined shape or perform-
ing a precalculated locomotion pattern (Støy et al. 2002;
Shen et al. 2006). If a modular robot can utilize the dis-
tributed sensing capabilities in its modules, it can poten-
tially adapt its strategy to cope with environmental change
more effectively. A small number of groups have addressed
how to design adaptive control strategies for modular robot
tasks, for example performing conforming locomotion on
a snake robot (Kamimura et al. 2004; Yim et al. 2004).
However, in these systems, the control laws are individually

School of Engineering and Applied Sciences, Wyss Institute for
Biologically-Inspired Engineering, Harvard University, Cambridge, MA,
USA

Corresponding author:
Chih-Han Yu
School of Engineering and Applied Sciences, Wyss Institute for
Biologically-Inspired Engineering, Harvard University, 33 Oxford Street,
Cambridge, MA 02138, USA
Email: chihanyu@gmail.com

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

2 The International Journal of Robotics Research 00(000)

Fig. 1. Different self-adaptation tasks that are achievable with this
control framework. (a) Self-balancing table. The module-formed
legs are capable of maintaining a level table surface irrespective
of tilt changes. (b) Terrain-adaptive bridge. The bridge is able to
achieve a flat bridge surface when it is placed on a rough terrain.
(c) A 3D Relief display that is capable of rendering complicated
shapes. (d) A modular gripper. The modules can cooperatively
form a configuration that grasps a fragile object, e.g. a balloon.

designed for a specific task and specific robot. These control
strategies do not easily generalize to other systems. Further-
more, the theoretical properties of these control strategies
are also rarely addressed, even their correctness. To design
control algorithms for reconfigurable multi-agent systems
such as modular robots, it is more effective to have a gener-
alizable control framework that can be implemented in dif-
ferent systems and configurations. Furthermore, it is impor-
tant to theoretically prove whether the designed strategies
will correctly lead the robot to achieve the desired tasks.

Biological groups can provide common principles for
individual agents to adaptively achieve collective goals.
One common strategy by which biological groups achieve
a collective goal is by each agent’s self-adaptively con-
trolling its state based on feedback from local neighbors
(Potts 1984; Okubo 1986; Reynolds 1987). For example,
each bird in a migrating flock decides its traveling direction
based on its local neighbors’ traveling directions, and the
whole group can travel cohesively for thousands of miles.
Although local interaction between agents is simple, the
global behavior it can achieve is amazingly scalable and
robust. Recently, there has been some success on analyzing
flocking rules and applying them to allow robot swarms to
perform flocking (Jadbabaie et al. 2003; Olfati-Saber 2006;
Turgut et al. 2008). However, how to generalize such prin-
ciples to robotic applications beyond flocking-type tasks is
rarely addressed in the literatures.

In this paper, we propose a self-organizing framework
and address the following open questions to translate such
biological concepts into a control approach that can be
widely applicable in modular and distributed robotics:

1. Can we design a control framework that can capture
self-adaptive tasks and goals? Further, can we derive
unified principles for applying it to different robots and
tasks?

2. Can we provide a theoretical guarantee that the modular
robot will achieve the desired global goal? Also, what
are the factors affecting the speed of completion?

3. How can we express a wide range of modular robot
tasks and goals with this framework?

We first show that a diverse set of modular robot self-
adaptive tasks can be expressed as distributed constraint-
maintenance on a multi-agent system. The relationship
between neighboring modules can be expressed as sensory
constraints in self-adaptive tasks. When each module sat-
isfies its local constraints, the whole system achieves the
desired task. Exploiting locality in this task formulation,
we propose a distributed homeostasis algorithm that allows
agents to achieve the desired tasks. We show that this algo-
rithm relates strongly to a class of algorithms in control
theory called distributed consensus (DC), which has been
successfully used to model biological group behaviors such
as flocking (Reynolds 1987) and firefly synchronization
(Lucarelli and Wang 2004; Degesys et al. 2007). We further
extend its scope by proposing a generalized distributed con-
sensus (GDC) framework and deriving unified principles
for designing controllers in distributed robot applications.
This significantly enlarges the application area of tradi-
tional DC and allows various systems that can be viewed
as sensor–actuator networks to be captured by this frame-
work. We prove the correctness of the algorithm by showing
that the desired global behavior will result from the agents’
local interactions. Building upon this analysis, we charac-
terize how various factors, for example network diameter,
affect the system’s convergence speed. Our theoretical study
also increases our understanding of how to identify the type
of tasks for which this kind of algorithm is well suited.
The theoretical and algorithmic contributions of this work
lead to a unified framework that provably allows modular
robots to achieve various self-adaptive tasks with a common
control strategy.

In addition to the theoretical work, we also present empir-
ical results from implementing this framework on a diverse
set of modular robot applications. In a chain-style modu-
lar robot system, we show that the modules can collectively
form adaptive structures such as a self-balancing table and
a terrain-adaptive bridge (Figure 1(a) and (b)). Our results
show that the speed of the algorithm is fast enough to
allow fast adaptation to constant perturbations. We fur-
ther demonstrate that this framework can be extended to
modular robots with indirect mapping between sensors and

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Yu and Nagpal 3

actuators: a modular gripper that can dynamically adjust
its grasping posture and maintain uniform pressure on the
target object (Figure 1(d)); and a modular column that can
adjust to external pressure to provide firm support. Finally,
we provide a discussion about how various modular robot
tasks can be viewed as self-adaptation, e.g. for a modular
prosthetic structure that supports different locomotion sce-
narios and a 3D relief display (Figure 1(c)), and how this
framework can be applied to many distributed autonomous
systems beyond modular robots.

The rest of the paper is organized as follows: we start
with a literature review in Section 2. We define our robot
model in Section 3. We describe the distributed homeosta-
sis algorithm and its generalization in Section 4. We present
various theoretical properties of this framework in Sections
5 and 6. We then present four different self-adaptation tasks
that are achievable within this framework and their exper-
imental evaluations in Section 7. Furthermore, we provide
discussions on potential extensions and limitations of this
framework in Section 8. Finally, we draw conclusions in
Section 9.

2. Related Work

A modular robot is a class of robots that are composed of
many independent modules. Each module can communicate
locally with other modules that are physically connected
to it. With appropriate control, modular robots are capa-
ble of changing their configurations to become different
structures or shapes (Pamecha et al. 1996; Vona and Rus
2001; Rus et al. 2002; Murata et al. 2002; Yim et al. 2004;
Shen et al. 2006; Yu et al. 2008). The design of modular
robots has been greatly influenced by multicellular systems
in biology. Each module is like a cell in a multicellular
organism that can potentially adapt to different environ-
ments through changing either its internal structure or its
external connectivity with other “cells”. The ultimate goal
for modular robots is to allow such a system to achieve
the task adaptively according to its external environment
by either controlling actuator parameters or changing the
overall connectivity of the modules.

Most groups have focused on static predefined goals that
do not depend on sensors for shape transformation and
locomotion (Rus et al. 2002; Murata et al. 2002; Zykov
et al. 2005). This usually makes the robots difficult to oper-
ate in a dynamic environment. Only a few groups have
addressed self-adaptive tasks using centralized or decentral-
ized control (Rus et al. 2002; Murata et al. 2002; Yim et al.
2004; Shimizu et al. 2005; Shen et al. 2006). In chain-based
robots, Yim et al. (2004) have demonstrated robot locomo-
tion that conforms to the environment via a hand-designed
gait table and distributed force feedback. They showed that
such an approach allows the robot to negotiate through
different obstacle environments. Another type of adaptive
locomotion strategy for chain-based robots is based on Cen-
tral Pattern Generator (CPG). Kamimura et al. and Moeckel

et al. have demonstrated such an approach in the M-TRAN
(Kamimura et al. 2004) and YaMoR (Moeckel et al. 2005)
modular robots, respectively. However, most of the strate-
gies in this category require a tedious design process. In
addition, there is no theoretical guarantee whether the con-
trol laws will correctly lead all modules to achieve the
desired task. The hormone-inspired control framework of
Shen et al. (2004) and the resilient robot of Bongard et al.
(2007) also address how one can design a controller that
adapts to different modular robot topologies. However, their
work does not address strategies that allow modular robots
to adapt to different environments.

Rus et al. have demonstrated distributed algorithms for
locomotion over obstacles (Rus et al. 2002). Bojinov et al.
have presented control algorithms for several interesting
examples that were tested in simulations: for instance, a
hand that grasps an object and a table that adaptively sup-
ports a weight (Bojinov et al. 2000). Although Bojinov
et al. provides a framework for describing adaptive tasks,
it is difficult to generalize to other systems and theoreti-
cally prove its correctness. Furthermore, lattice-based sys-
tems have one major disadvantage in speed: shape change
can only be achieved through module movement, which
is slow in the hardware implementation. In this work, we
mainly consider a chain-based system that can achieve fast
adaptation.

Our proposed control strategy is closely related to DC
algorithms in multi-agent systems (Bertsekas and Tsitsiklis
1989; Olfati-Saber et al. 2007). DC is considered to be an
underlying principle in many biological group phenomena,
from birds flocking to firefly synchronization. It has been
widely applied in distributed (robotic) systems, including
autonomous vehicle formation control (Jadbabaie et al.
2003; Fax and Murray 2004; Olfati-Saber 2006), sensor
network time synchronization (Lucarelli and Wang 2004;
Degesys et al. 2007), and the sensor coverage problem
(Schwager et al. 2008).

Our work differs from traditional DC algorithms in the
following three ways. (1) In the algorithmic aspect, we
propose a generalized distributed consensus framework to
break the constraint that agents’ sensor space and control
space must be the same, as in most of the current DC
applications1. We further supply three sufficient conditions
that allow one to design control laws for different sensor–
actuator networked agent systems. This allows our frame-
work to be applied to a variety of distributed robotic sys-
tems and tasks (Section 4.2). (2) In the application aspect,
we extend such an approach to the area of modular robotics
and show that it is powerful in solving self-adaptive tasks
that require constant adaptation to environmental uncertain-
ties. (3) In the theoretical aspect, we formulate a framework
that allows one to view many sensor–actuator tasks as GDC
tasks. In addition to proving GDC algorithms, this work
also contributes to analyzing how various factors, e.g. agent
topology and task complexities, influence GDC’s conver-
gence speed, such that it can predict the performance of

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

4 The International Journal of Robotics Research 00(000)

Fig. 2. Top: Terrain-adaptive bridge. Each pillar is an agent that
is equipped with computational unit, linear actuator, and commu-
nication channel. The robot is initially placed on rough terrain
(left) and is programmed to achieve a flat surface (right). Bot-
tom: A skeleton view of the terrain-adaptive bridge. Each agent
has computation (A), actuation (B), and communication (C) units.

the algorithm for a given modular robot connectivity and
programmed task.

3. Modular Robot Model

In this section, we describe the robot model and the capa-
bilities assumed in our framework. Our primary focus is on
modular robotic systems in which the whole robot is com-
posed of many independent and autonomous modules. Our
system contains the following components.

3.1. Agent

We define an agent as an independent unit with the follow-
ing capabilities:

• Sensor. Each agent is equipped with one or more sen-
sors suited to different robotics applications. Sensors
are used to measure the current state of the agent or rela-
tionship between a neighboring pair of agents. In some
applications, sensors can also be shared between two
neighboring agents to allow them to form inter-agent
state relationships. For example, in the terrain-adaptive
bridge in Figure 2, there is a tilt sensor mounted in
between two pillar agents which allows them to com-
pute inter-agent altitude differences.

• Actuator. Each agent is equipped with an actuator.
We consider both linear and rotary actuators in our
framework.

• Computation/Communication. Each agent is capable of
performing simple computations such as addition and
multiplication. It is also able to communicate with its
immediate neighbors that are physically connected to it.

For example, in the terrain-adaptive modular bridge
example (Figure 2), each module (pillar) has the above-
described capabilities (tilt sensor, linear actuator, compu-
tational unit, and communication channel) and is therefore
an agent. We therefore refer to a module as an agent in the

rest of this article. Most of the current modular robots have
these stated capabilities, e.g. M-TRAN (Murata et al. 2002),
Odin (Lyder et al. 2008), and Superbot (Shen et al. 2006).

3.2. Networked Multi-agent System

In our model, agents have only a one-hop local view. They
achieve global tasks by communicating and cooperating
with their immediate neighbors. We can therefore view the
model as a networked multi-agent system. This can be more
succinctly represented as a coordination graph G in which
vertices represent agents and edges represent communi-
cation between an agent and its neighbors. For example,
in Figure 3 (left), edges correspond to the communica-
tion links between two neighboring agents in the bridge
of Figure 2. The neighbor relationship between agents
is symmetric, so the edges in graph G are undirected
(Figure 3).

3.3. Self-adaptive Tasks as Distributed
Constraint Maintenance

In this framework, the multi-agent tasks are described as a
set of inter-agent state or sensor constraints (differences),
e.g. as the desired sensor difference between neighboring
agents, and each agent iteratively tries to satisfy its local
constraints. A desired task is achieved if all agents satisfy
constraints with all neighbors. One merit of this approach
is that once agents have deviated from satisfying the goal
state, e.g. due to environment perturbations, each agent
autonomously restarts and drives the whole system back to
the desired state. This formulation simplifies programming
strategies required for the modular robot to autonomously
adapt to different conditions by viewing adaptive tasks as
maintaining constraints.

Many modular robot tasks can be formulated under
this task specification. For example, in the terrain-adaptive
bridge example, one can simply specify that each agent
needs to maintain zero tilt angle along the edges with
all of its neighbors, as shown in the bottom diagram of
Figure 2. Other robotic systems with no direct sensor–
actuator mapping can also utilize such task specifications;
for example, in the case of a modular gripper that main-
tains equal pressure on distributed sensors, the task can be
described by simply programming each agent to maintain a
pressure equal to that of its neighbors (Figure 1(d)); further
details are given in Section 7.

Such a task description scheme does not require each
agent to maintain the same state but can be extended to
more complex specifications. For example, one can specify
that the modular gripper grasp the object with a different
desired pressure distribution (such as applying more pres-
sure on the finger tips). We can also specify a modular
surface robot to form more a complex shape by specify-
ing the desired inter-agent constraints. Even in cases where
agents are not equipped with actuation capabilities, we

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Yu and Nagpal 5

Fig. 3. Left: The modular robot can be viewed as a graph where nodes represent agents and edges represent inter-agent links. There is
a sensor on each edge that provides inter-agent tilt angle. Right: An agent cooperation graph can be arbitrary connectivity. Each agent’s
control algorithm takes all neighboring sensor readings as inputs to compute the agent’s new state.

can specify the task in terms of desired state relationships
between agents. For example, in a sensor network time-
synchronization task, we can simply program each agent to
maintain the same timer as its neighbors (agents that are
within its communication radius).

4. Control Algorithm

In this section, we begin by presenting a distributed home-
ostasis algorithm that is based on distributed consensus. We
then present a more general form of the algorithm and suf-
ficient conditions for agents to reach consensus. This gen-
eralized framework allows us to extend the control law to a
wide range of applications which we cover in Section 7.

4.1. Distributed Homeostasis Algorithm

The algorithm is formulated as a process by which a group
of networked agents come to a state of satisfying constraints
by communicating only with neighbors. At each time step,
each agent updates its new state according to the difference
between its own state and its neighbors’ states. This process
can be formally written as follows.

Algorithm 1 (Distributed Homeostasis). We have

xi(t + 1) = xi(t) + α
∑

aj∈Ni

(
xj(t) − xi(t) −�∗

ij

)
, (1)

where ai indicates agent i, and xi(t) and xi(t + 1) are actu-
ation states2 of agent i at time step t and t + 1, respectively.
Here Ni indicates the set of all one-hop neighbors of ai. The
small constant α is sometimes called the damping factor. Its
value needs to fall within this range: 0 < α < 1/|Ni|. The
inter-agent constraint variable �∗

ij is the desired state differ-
ence between agents ai and aj. As we described previously
in Section 3, the inter-agent constraints, i.e. �∗

ij and for all
i, j ∈ Ni, are specified when we assign the task to the robot.

If �∗
ij = 0, for all i, j ∈ Ni, agents are programmed to

achieve the same state and this process is DC. On the other
hand, with �∗

ij �= 0, this is sometimes also called biased
consensus.

There are three main assumptions buried in Equation (1).
First, each agent is capable of directly observing its state
and its neighbors’ states. Second, each agent is capable of
freely driving itself to a new state xi(t+1). Third, we assume
state variable xi(t) to be scalar and is continuous.

4.2. GDC Algorithm

In many cases, the relationship between sensor space and
agent’s actuation state is not precisely known. For example,
in the modular gripper example in Figure 1 (d), each mod-
ule is equipped with a rotary motor and a pressure sensor.
We program the gripper to grasp around the object while
maintaining each module’s pressure on the object to be
equal. The mapping between the actuator’s actuating angle
and agent pressure sensor value cannot be directly com-
puted. Therefore, we propose a more general form of the
agent control algorithm by allowing agent constraints to be
arbitrary sensory constraints between neighboring agents.

Algorithm 2 (Generalized Distributed Consensus). We
have

xi(t + 1) = xi(t) + α ·
∑

aj∈Ni

(
g(θi, θj) −θ∗

ij

)
(2)

where θi is agent ai’s sensor reading and θj indicates the
sensor reading of ai’s neighbor aj, g(θi, θj) is a sensory
feedback function that agent ai receives from its neighbor
aj, and θ∗

ij , for all i, j ∈ Ni are task-specific inter-agent
constraints, similar to �∗

ij in Equation (1).

We note that Equation (2) assumes that agents perform
updates with round synchronization, i.e. each agent updates
according sensory feedback at every time step. As we prove

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

6 The International Journal of Robotics Research 00(000)

in the following section, there are three important require-
ments for designing g(θi, θj) to ensure that all agents will
correctly complete the desired task

g(θi, θj) −θ∗
ij = 0 ⇔ θj − θi = θ∗

ij , (3)

sign(xj − xi − �∗
ij) = sign(g(θi, θj) −θ∗

ij) , (4)

g(−θi, −θj) = −g(θi, θj) . (5)

Intuitively, condition 1 (Equation (3)) means that g only
“thinks” the system is solved when it actually is; condition
2 (Equation (4)) means that when not solved, each sensory
feedback g at least points the agent in the correct direc-
tion to satisfy the local constraint θ∗

ij with a neighboring
agent aj; and condition 3 (Equation (5)) means that g is
anti-symmetric.

Equation (2) allows us to formulate many different tasks
in sensor–actuator networks as a consensus-reaching pro-
cess between agents. In the previous modular gripper exam-
ple, xi(t) is used to represent the rotational angle of the
agent’s motor and θi is used to represent the agent’s pres-
sure sensor reading. We can immediately see that there is
no direct mapping between an agent’s rotational angle and
its pressure reading. However, the desired task that agents
are programmed to achieve equal pressure, i.e. θ∗

ij = 0, for
all i, j ∈ Ni, can be viewed as reaching a consensus state:
θi = θ̄ , for all i.

To utilize the GDC algorithm to solve different tasks
requires us to address the following challenge: we need
to appropriately design the function g such that the over-
all dynamics of the agents is equivalent to the distributed
consensus dynamics. In fact, Equations (3)–(5) are three
simple principles that can guide us to efficiently design g.
We discuss the theoretical properties of the GDC algorithm
in Sections 5.2 and 6 and describe how to apply the prin-
ciples of Equations (3)–(5) in designing control laws for
different applications in Section 7.

5. Correctness of the Algorithm

In the control law we have presented, an agent sums the
feedback from its local neighbors and acts in some fashion
based on that feedback. Since the system is decentralized
with many agents acting on local information in parallel, a
key question is whether these actions always will produce
the correct desired global goal (convergence from all initial
states). Here we show the following: (1) that the dynamics
of all agents can be modeled as a single collective dynam-
ical system; (2) based on this formulation, that the correct-
ness of the algorithms can be characterized for arbitrary
connected graphs G and desired goals in both standard DC
and generalized DC algorithms.

5.1. Proofs for Distributed Homeostasis
Algorithm

We first demonstrate how to aggregate all agent update
equations to become collective dynamics. This allows us to

study the emergent global behavior of all agents by analyz-
ing a single dynamical system. By leveraging results from
spectral graph theory and stochastic matrix theory, we prove
the convergence property for this dynamical system.

5.1.1. Collective Dynamics We first consider the case for
standard distributed consensus algorithm (Equation (1)).
Let X (t) represent the ensemble of all agents’ states at
time t:

X (t) = (x1(t) , x2(t) , . . . , xn(t))′ .

Based on Equation (1), we can write the collective
dynamics of all agents as

X (t + 1) = A · X (t) + b̃, (6)

where A = [aij], an n×n matrix with element aij defined by

aij =
⎧
⎨

⎩

α if aj ∈ Ni and i �= j
1 − α · |Ni| if i = j
0 otherwise

and where b̃i = α ·∑aj∈Ni
�∗

ij is a bias vector. We note that
A is a stochastic matrix since each row sums to 1 (Seneta
1981). In addition,

∑
i b̃i = 0, since �∗

ij = −�∗
ji for all i, j.

Equation (6) can be rewritten as

X (t + 1) −X (t) = −α · LX (t) +b̃,

where L is the so-called graph Laplacian matrix L = [lij],
with

lij =
⎧
⎨

⎩

−1 if aj ∈ Ni and i �= j,
|Ni| if i = j,
0 otherwise.

In the case that b̃ = 0, this equation has been analyzed
thoroughly. Olfati-Saber et al. (2007) have shown how it
arises in different types of consensus problem, including the
alignment problem in flocking (agreeing on a single head-
ing) and the synchronization problem (agreeing on a single
phase).

Their key results relate the eigenvalues of A and L to
convergence of the local rules defined by these matrices3.
The key point for us is that having a non-zero bias vector b̃
does not affect the eigenvalue analysis, so that the results of
Olfati-Saber et al. (2007) apply here as well.

Specifically, let λi denote the ith smallest eigenvalue
of the graph Laplacian L, and let μi be the ith largest
eigenvalue of A. Then

μi = 1 − αλi.

Now, L has a simple eigenvalue λ1 = 0 with associated
eigenvector 1 (an all-ones vector), and A has as its largest
eigenvalue μ1 = 1. As shown in (Mohar 1991a), when
the coordination graph G is connected, the second small-
est eigenvalue of L, λ2, is strictly larger than zero. Thus, the
second largest eigenvalue μ2 of A is strictly smaller than
one.

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Yu and Nagpal 7

We define X ∗ as our desired state, it is then easy to
see (as shown in Appendix A) that under the iteration of
Equation (6),

‖X (t) − X ∗‖2 ≤ μ2t
2 ‖X (0) − X ∗‖2.

Thus, since μ2 < 1, we have the following result.

Theorem 1 (Convergence, Distributed Homeostasis
Algorithm). Let X ∗ be the desired shape state that x∗

j −
x∗

i = �∗
ij for all ai and aj ∈ Ni and the cooperation graph G

is connected. The collective dynamics will converge to X ∗

for all initial conditions with exponential rate μ2.

Proof. See Appendix A.

Because μ2 does not depend on the bias vector b̃ at all,
this convergence analysis is independent of the desired task.

From the convergence proof, we can also see that

‖Y (t + 1) ‖ ≤ μ2‖Y (t) ‖, (7)

where Y (t) = ‖X (t) −X ∗‖ represents the current distance
from the desired goal.

5.2. Proofs for Generalized Distributed
Consensus Algorithm

Now we consider the case of the generalized distributed
consensus algorithm in Equation (2). We first let

φij(t) = α
g(θi, θj) −θ∗

ij

xj(t) −xi(t) −�∗
ij

.

Then we can reexpress Equation (2) as

xi(t + 1) = xi(t) +
∑

aj∈Ni

φij(t) (xj(t) −xi(t) −�∗
ij) . (8)

Intuitively, comparing Equation (8) with Equation (1), the
agent ai’s step length based on feedback is now a state-
dependent variable instead of a constant factor α. In other
words, this variable varies with the changing state of the
agents. Following the same procedure in Section 5.1, we
can rewrite the system dynamics as

X (t + 1) = A(t) ·X (t) −b̃(t) , (9)

where A(t) = [aij(t)] is an n × n matrix with element aij(t)
defined by

aij(t) =
⎧
⎨

⎩

φij(t) if aj ∈ Ni and i �= j
1 −∑

aj∈Ni
φij(t) if i = j

0 otherwise
(10)

and b̃i(t) = ∑
aj∈Ni

φij(t) �∗
ij. We note that since φij(t) is a

state-dependent (and, thus, time-varying) variable, so A(t)
and b̃(t) are also state dependent.

The style of convergence proof we used in the original
case required the generating matrix A to be row stochastic

and symmetric. That is, (i) Aij ≥ 0 for i �= j; (ii) Aii ≤ 0
for all i; (iii) Aij = Aji for all i, j; (iv)

∑
j Aij = 1 for all i.

If g satisfies the three requirements, A(t) is actually row
stochastic and symmetric for all t. To see why, note that for
off-diagonal elements, Ai�=j(t) = φi�=j(t) for all ai and aj ∈
Ni. However, because of the condition on g in Equation (4),
the numerator in the definition of φij always has the same
sign as the denominator, and so their ratio is non-negative.
For the diagonal elements, note that Aii(t) = 1−∑j φij(t) ≤
0 for all i. This can always be ensured as long as α is chosen
small enough. Finally, since g(−x, −y) = −g(x, y) (Equa-
tion (5)), we have φij(t) = φji(t) so the symmetry condition
is ensured4.

The guarantee of stochasticity and symmetry allows us
to prove the following result.

Theorem 2 (Convergence, GDC Algorithm). Let X ∗ be
the desired shape state that x∗

j − x∗
i = �∗

ij and cooperation
graph G be connected. The collective dynamics defined by
Equation (9) will ensure that X (t) converges to X ∗ for all
initial conditions with convergence rate of at least

μ∗
2 = max

t
μ2(A(t)) .

Proof. See Appendix B.

Intuitively, what this result says is that the analog of the
original result holds, except that the guarantee becomes
somewhat looser, as we now have to maximize μ2(A(t))
over all t. However, as long as we have a lower bound on
λ2, the second eigenvalue of the cooperation graph, the
essential point still holds.

6. Factors Affecting Convergence Speed

In the previous section, we proved the correctness of the
algorithms and derived convergence rates. We now address
several important questions related to how convergence
rates vary with assorted network graph parameters. More
specifically, we examine the following factors:

1. Scalability and impact of multi-agent topology. How
does the time to complete the desired task increase as
we increase the number of agents and the diameter of
the networked multi-agent system?

2. Task complexity. How does the complexity of the task
affect the time to achieve the task?

3. Agent failures. How does the multi-agent system per-
form when some agents encounter actuation and/or
communication failures?

4. Reactivity. How do the agents react to perturbations
from the desired state?

We provide precise answers to these questions. In doing
so, it is useful first to derive an inequality for the number
of iterations required to achieve our desired task within a
certain error tolerance. By error tolerance, we mean the
following.

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

8 The International Journal of Robotics Research 00(000)

Definition 1. The task achieved by the agents at state X (t)
is an ε-approximation of the desired task if X (t) satisfies
Y (t) = ‖X (t) − X ∗‖ ≤ ε.

The error tolerance ε represents the fact that agents have
finite resolution in controlling their actuation, so some level
of inaccuracy must be tolerated. From Theorems 1 and 2,
we know that the agents approach the desired state X ∗ at
an exponential rate. We can further express the number of
time steps required to achieve the goal as a function of con-
vergence rate μ2, ε, the initial condition X (0), and the goal
condition X ∗:

‖X (t∗) −X ∗‖ ≤ μtmax‖X (0) −X ∗‖ ≤ ε

⇒ tmax ≤ logμ

(
ε

‖X (0) −X ∗‖
)

. (11)

We can see from inequality (11) that the number of iter-
ations required, tmax, depends on two main factors: the con-
nectivity of the cooperation graph G (as reflected by its
corresponding matrix A’s second eigenvalue μ2) and the
distance ‖X (0) −X ∗‖ from the initial state X (0) to the
desired goal X ∗. The first factor is dependent only on G
and is independent of the desired goal X ∗, and vice versa
for the second factor.

6.1. Scalability and Topology

Assuming that the initial distance from the desired goal is
fixed, the number of iterations depends on μ2. We showed in
Section 5.2 that μ2 = 1−αλ2, where λ2 is the second eigen-
value of the graph Laplacian. This second eigenvalue has a
special significance in graph theory and is called the alge-
braic connectivity because it encodes how well the graph
is connected. While algebraic connectivity has been stud-
ied extensively in graph theory, its use in understanding
decentralized algorithms is relatively new. Here, we show
that there are several important bounds on λ2 that will pro-
vide us with a concrete understanding of how the algorithm
scales as we scale up the size of the multi-agent system.

Theorem 3 (Mohar (1991a)). Let L be the graph Lapla-
cian of G. Then the second eigenvalue λ2 of L satisfies

λ2 ≥ 4

|G| · diam(G)
,

where n = |G| and D = diam(G) are the size and diam-
eter of G, respectively. Note that this theorem implicitly
provides an upper bound on μ2, which gives us the worst
case convergence rate.

μ2 ≤ 1 − 4α

n · D
. (12)

For example, assume that the multi-agent system consists
of n agents connected in a line. If we double the length of
the line (thus doubling both n and D), λ2 is reduced by a

factor of four. Hence, the runtime of the algorithm is worst-
case bounded by O(n2) for a line. We can see from here that
the performance drop is greater than linear with the number
of nodes or diameter. However, as we show in Section 6.4,
the distance from the final state plays an important role, and
thus in many cases the absolute number of iterations can be
quite low.

Note that there are many forms of upper and lower
bounds on λ2 that can provide tighter estimates of the con-
vergence time. Here, we use one of the simpler bounds that
is easy to reason from, but in Appendix G we provide some
more examples of known bounds based on different graph
topological properties.

6.2. Task Complexity

Another important question is how the desired task impacts
the speed of convergence. As we can see from inequality
(11), a bound on the effect of task complexity on con-
vergence is given by the Euclidean distance of the final
state from the initial state. Given a random condition, one
can compute the expected distance to a complex task and
thus find an expected running time for achieving that task.
This allows us to directly estimate convergence time given
assumptions about the initial state and knowledge of the
final desired goal. In fact, it is possible to derive a finite
bound on the total number of iterations required for any task
given a specific initial condition.

Theorem 4. Let a collective dynamical system’s conver-
gence rate be μ. Assume xi(t) ∈ R+ for all i, t and that
initial states of the agents are known. Let C = ∑

i xi(0).
Then the number of iterations required to achieve an ε-
approximation of the desired goal is at most

tmax =
⌈

logμ2

(
ε√
2C

)⌉
.

Proof. See Appendix C.

We can further replace μ2 with the worst-case conver-
gence rate obtained from Theorem 3: μ2 = 1−α/(n ·D) or
μ2 = 1−φmin/(n ·D). This indicates that if the agents’ con-
nection topology and the agents’ initial states are known,
we can calculate the number of iterations guaranteed to
achieve an ε-approximation of the desired goal.

6.3. Robustness to Agent Failures

In this section, we examine the correctness of the algorithm
while having one or more agents fail in the process. The
first type of failure we consider here is actuation failure.
In this case, some agents are unable to drive themselves to
the desired states by controlling their equipped actuators.
They are then stuck in the state they have when the failures
initially occur. We show that if there is one agent with an
actuation failure, the whole system will still converge and
achieve the desired task X ∗. We then show that if there are

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Yu and Nagpal 9

multiple such cases, the system will still converge, but may
converge to a non-satisfying state.

Theorem 5 (Single-agent Actuation Failure). Let agent
ai be the failed agent: ai fails to cooperate and maintains
its state x∗. Let all of the other agents execute either the
distributed homeostasis or the GDC algorithm. The agents
will eventually achieve the desired state X ∗.

Proof. See Appendix D.

Theorem 5 intuitively tells us that all other agents will
try to accommodate the single failed agent, such that the
desired task is still eventually achieved. We now look at the
case when there are multiple agent failures.

Theorem 6 (Multiple-agents Actuation Failures). Let F
be the set of all failed agents and |F| > 1. Let all of the
other agents executes either the distributed homeostasis or
GDC algorithm. All agents will eventually converge to fixed
states XF, but it is not guaranteed that XF = X ∗.

Proof. See Appendix E.

The above two theorems tell us that when the networked
multi-agent system executes our proposed algorithm, we
can allow one agent to have complete actuation failure and
still complete the desired task. In practice, there are many
ways to prevent an agent’s complete actuation failure. One
simple way is to equip each agent with redundant actu-
ators, similar to how multicellular systems increase their
robustness with redundant cells. For example, we can equip
three redundant actuators in each agent (leg) in the self-
balancing table example. An agent will only have complete
actuation failure when all three actuators fail. For detailed
implementation of this approach, please refer to Yu et al.
(2007).

Another type of agent failure is communication failure.
In this case, some agents are not able to communicate
with their neighbors, either temporarily or permanently. The
agent communication graph is thus time-varying, denoted
as G(t). We define the time-varying agent communication
graph as periodically connected if the union of graph G(t)
over a finite time period is connected. This leads to the
following theorem.

Theorem 7 (Communication Failures). Let G(t) be the
agent communication topology at time t. If some agents’
communication links temporarily fail, and if G(t) is periodi-
cally connected over time, the agents will eventually achieve
the desired task.

Proof. See Appendix F.

Theorem 7 intuitively tells us that agents can still col-
lectively achieve the desired task even if the communica-
tion links between agents fail temporarily, provided that the
graph G(t) satisfies the periodically connected definition.

Fig. 4. Number of iterations required to complete the task ver-
sus number of agents, large and small perturbations with self-
organizing (decentralized) approach. In our experiment, agents are
connected to form a grid graph. We increase the number of agents
of the grid graph from 1 × 1, 2 × 2, . . . , 15 × 15 (x-axis). We
apply small perturbations (2ε, 5ε, 7ε, 10ε) and large perturbations
(250ε, 500ε, 1,000ε) in each graph configuration. We can see that,
in small perturbation cases, the number of iteration required stays
low even when we increase the number of agents in the graph to
several hundreds.

6.4. Reactivity

Another important criterion is how the networked multi-
agent system reacts to perturbations. From inequality (11),
we can see that if Y (0) is small, then a few iterations will be
sufficient to achieve an ε-approximation. Furthermore, even
as the number of agents increases, the number of iterations
remains low.

Figure 4 shows the system’s reactivity for square grid
topologies (1 × 1, 2 × 2, . . . , 15 × 15). Red lines indicate
larger perturbations (Y (0) = 250ε, 500ε, 1,000ε), and blue
lines indicate smaller perturbations (Y (0) = 2ε, 5ε, 7ε, and
10ε). Each point on Figure 4 represents the mean num-
ber of simulation rounds required of 1,000 random initial
X (0) that satisfy the given Y (0). We can see from the figure
that the networked multi-agent system’s reactivities toward
small perturbations (blue lines) scale well with the number
of agents. If the environment changes smoothly, then even
large changes will appear as small perturbations over time.
This shows why the algorithm performs particularly well in
adaptation tasks such as the self-adaptive structures shown
in the next section.

7. Self-adaptive Tasks

Based on our theoretical analysis in the previous section, we
can see that our proposed algorithm achieves superior per-
formance in tasks that require the robot to adapt to external
perturbations constantly. In this section, we illustrate sev-
eral example modular robot self-adaptive tasks of this type.
We demonstrate: (A) a module-formed table and bridge that

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

10 The International Journal of Robotics Research 00(000)

Fig. 5. (a) Concept diagram of self-adaptive structure. Red modules form a substrate of the surface while blue modules form the “legs”
of the structure. (b) Self-balancing table hardware prototype. Each leg is an independent agent, and the agent topology is shown on the
right. (c) Terrain-adaptive bridge prototype. Each pillar is an independent agent.

can quickly adapt to external perturbation while maintain-
ing the table surface and bridge surface level; (B) A modu-
lar pressure-adaptive column that is capable of maintaining
“pressure consensus” by changing shape itself to absorb
uniform pressure; and (C) a modular gripper that is capa-
ble of grasping a fragile object while each module applies
identical force on the balloon.

We first present how to apply our proposed algorithm in
solving each of the above tasks with these modular robots.
With each hardware prototype, we evaluate our proposed
algorithm’s performance in several different aspects, includ-
ing: (1) its capability of adaptive to external perturbations;
(2) how different initial conditions would affect the time
required to complete the desired tasks; (3) its scalability to
the number of modules.

7.1. Self-balancing Table and Terrain-adaptive
Bridge

In this section, we describe two self-adaptive structures
formed by modular robots: a self-balancing table (shown
in Figure 5(b)) and a terrain-adaptive bridge (Figure 5(c)).
In both applications, modules form “legs” of the structures
and cooperatively maintain the top surfaces level. Figure
5(a) shows the concept diagram of the self-balancing table.
The red modules in the figure form a substrate of the table
surface while blue modules form the table’s legs. We pro-
gram each leg of the table, composed of three modules, as
an agent. There is a tilt sensor in between each pair of legs
to measure neighboring agents’ orientation relationships.
Agents are programmed to maintain zero tilt angles with
respect to all of their neighbors. More specifically, our algo-
rithmic procedure can be divided into the following three
steps.

Step 1 (Initialization) Modules start sending messages to
their neighbors. Based on these messages, modules can
identify whether they belong to the surface or part of the
leg (agent). The top module (dark red modules in Figure

5(a)) in each leg coordinates the control of all modules in
the leg. We call these modules pivot modules.

Step 2 (Sensing) We call modules forming the surface in
between two neighboring agents (legs), ai and aj, a surface
group, denoted as Sij. There is a tilt sensor available on each
surface group. We denote the sensor reading on Sij as θij.
At each time step modules in a surface group start propa-
gating their sensor readings to neighboring modules. These
messages contain sensory information and are aggregated
by pivot modules. After collecting all of the messages, the
pivot modules then transmit the aggregated information to
the rest of the modules in the leg (agent).

Step 3 (Actuation) After receiving this sensory informa-
tion, each agent uses the data as input from which to
compute appropriate actuation parameters for each module.
Each agent’s state at t, xi(t), is used to denote the length of
the leg. The Agents’ control law is derived from Equation
(2) and can be formally written as

xi(t + 1) = xi(t) +α ·
∑

aj∈Ni

θij. (13)

Now the generalized feedback function g(·) is simply θij,
the tilt angle of the surface between agents ai and aj. We
can in fact easily show that g(·) satisfies Equations (3)–(5):
(1) θij = 0 only if xi = xj (two legs have the same height);
(2) The tilt angle on the surface is proportional to the height
difference between two legs and has the same sign; (3) θij is
anti-symmetric.

The terrain-adaptive bridge follows a similar formulation
as the self-balancing table. Each leg of the bridge is viewed
as an agent, and the set of surface modules in between each
pair of legs is equipped with a tilt sensor. All agents execute
the control law in Equation (13).

Experimental Results In the first experiment, we exam-
ine how quickly and accurately the self-balancing table
responds to consistent, rapid environmental changes. In this

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Yu and Nagpal 11

Fig. 6. The self-balancing table response time to repeated environment changes. The robot was able to maintain its surface’s tilt angle
within 5–8◦ even when the board is tilted 30–40◦ over a few seconds.

Fig. 7. The bridge structure’s response time to achieve its surface’s levelness. In low, medium, and high roughness cases, it is capable of
achieving the average of passive links’ tilt angles ≤ 3◦ after 40 iterations. The average initial tilt sensor values for low, medium, high,
and extremely high roughness are 5◦, 8◦, 12◦, and 17◦, respectively. In extremely high roughness case, it achieves the same level of
levelness after 60 iterations.

experiment, we fix the robot’s four supporting groups to a
rigid board. We repeatedly change the orientation of the
board to examine the robot’s response. One additional tilt
sensor is mounted on the board to record environmental
changes. This sensor does not supply input to the robot.
Empirically, the sensors we use are somewhat noisy, espe-
cially under high-speed motion (e.g. the first 5 seconds of
Figure 6).

Agents are programmed to maintain a level surface, i.e.
tilt angles in the x-axis and y-axis, θx and θy, equal to zero at
all times. Therefore, |θx| + |θy| is an error measure of how
far the table surface is from a level state. Figure 7 shows
the results of the experiment. We can see that even when
the tilt angle of the floor is changed by 30–40◦ over a few
seconds, the table is able to quickly respond and keep the
surface level. The table never tilts more than 5–8◦.

In the second experiment, we examine the terrain-
adaptive bridge’s adaptiveness to terrains of different rough-
ness levels. The modules were assembled in the same
bridge-like configuration as Figure 5(c). In this experiment,
the assembly is placed on uneven terrain with the goal of
achieving a flat top surface: this requires all tilt sensors to
be zero. To test how fast the bridge can adapt to terrains of
different roughness, we sequentially increase the roughness
of the terrain by adding more underlying bricks. Since the
surface achieves levelness when all tilt sensor readings are
equal to zero, we use the sum of all tilt sensor readings’
absolute values as our levelness measure, as shown in the
following equation:

ε =
∑

∀i,j∈Ni

|θij|.

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

12 The International Journal of Robotics Research 00(000)

Fig. 8. The algorithmic overview of the pressure-adaptive col-
umn. Step 1: an unknown object is placed on the robot. Step 2:
Each agent sends its pressure reading to neighbors. Step 3: Each
agent continuously adapts based on its neighbor’s states.

Figure 7 shows the number of iterations required to
achieve levelness versus different levels of roughness of
the underlying terrain. Since the tilt sensors we use are
somewhat noisy, we define the bridge as having achieved
levelness when each passive link’s tilt angle is on average
smaller than 3◦. We can see from Figure 7 that the bridge
surface is capable of achieving levelness after running the
control algorithm for 40 iterations in low, medium, and high
roughness cases (x-axis represents the number of iterations
and y axis is). In extremely high roughness case, it achieves
levelness after approximately 60 iterations.

In the above applications, if agents’ actuation range does
not allow them to fully achieve the desired task (e.g. due
to the height range of each agent is limited), agents will
collectively achieve a state within its actuation range that is
closest to the goal state.

7.2. Pressure-Adaptive Column

One potential application for modular robotics is a recon-
figurable structure: a structure that can reconfigure itself
to achieve functional requirements irrespective of external
environment changes. Examples include forming support-
ing structure for a building that absorbs uniform force, and
a modular seat back that adapts to apply uniform pressure
on the user. Motivated by this application area, we construct
a pressure-adaptive column hardware with a modular robot.

As shown in Figure 8(1), each agent is equipped with
a linear actuator whose length can be precisely controlled
and a pressure sensor that can sense the force applied on
each agent. We program agents to achieve a state where
each agent absorbs equal force when an unknown object
or structure is placed on it.

The algorithmic overview of the self-adaptive process is
shown in Figure 8.

Step 1 (Initialization) An unknown object is placed on the
robot.

Step 2 (Sensing) Each agent starts exchanging current
pressure sensor feedback with its neighbors.

Step 3 (Actuation) Each agent computes its actuator’s new
parameters based on the sensor feedback that it receives
from all of its neighbors. Each agent iterates between Step
2 and Step 3. When the environment starts changing again,
the robot automatically goes back to Step 2.

In Step 3, each agent runs a control law to change the
length of its linear actuator xi based on sensory feedback
from its neighbors. This control law can be written as

xi(t + 1) = xi(t) + α ·
∑

aj∈Ni

(θj − θi) . (14)

Here, the feedback function g is simply g(θj, θi) = θj −θi,
and g satisfies the conditions in Equations (3)–(5), since: (1)
when θi = θj, g(θj, θi) = θj − θi = 0; (2) when sensory θi is
smaller than θj, g(θj, θi) > 0 such that agent ai increases its
length to increase its pressure state θi. Therefore, g(θi, θj)
leads actuator to move in the same direction as minimizing
θj − θi; (3) the g function is anti-symmetric. Therefore, the
control law (Equation (14)) will allow the robot to converge
to the desired state.

Experimental Results In the pressure-adaptive column
experiment, we examine the control law’s convergence
property with different initial conditions. Each agent is
equipped with a pressure sensor (force sensing resistor)
with sensory readings ranging from 0 to 900. Agents are
programmed to achieve equal pressure with their neigh-
bors. The weight of the unknown object is roughly 1.5 lb.
The robot starts in three different configurations, such that
the number of initial contacting agents is different, ranging
from one to three5. We define

ε = max
i

θi − min
i

θi,

the difference between maximal and minimal sensory read-
ing among agents, as a measure of distance from reaching
consensus. We can see from Figure 9 that ε decreases from
800 to around 100 after 1,000 iterations (∼ 10 seconds in
real time) in all three cases. We note that the sensor we use
is very noisy and sensitive to slight perturbations of the lin-
ear actuators. Therefore, we set the α in Equation (14) to be
a very small constant to avoid the column from being over-
sensitive to perturbations. This naturally leads to a longer
convergence time. We also note that the larger fluctuations
in the blue curve are primarily due to the object significantly
shifted its center of mass when more agents contact it.

7.3. Modular Gripper

In this section, we illustrate another application: a modu-
lar gripper. The gripper is capable of reconfiguring itself

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Yu and Nagpal 13

Fig. 9. Pressure-adaptive column with different initial conditions. We let the number of initial contacting agents be one (green), two
(red), and three (blue) respectively and examine how the column respond with different initializations. After 1,000 iterations of running
the control law, the distance measure, ε, decreases to less than 100. Right: Physical prototype of the pressure-adaptive column.

Fig. 10. The algorithmic overview of the grasping task. Step 1: The first module starts sensing the presence of the object. It starts
sending messages to it neighbors. Steps 2 and 3: Agents perform iterative sensing and actuation until they converge to the desired state.
Step 4: When the robot is perturbed by exogenous force, it goes back to Step 2.

to grasp an object using distributed sensing and actuation.
The control law design follows a similar procedure as in
the previous example. However, the analysis of the conver-
gence property is somewhat different due to the fact that
each agent’s actuation affects more than its own sensor state.

As shown in Figure 10(1), a modular gripper is composed
of a chain of modular agents, where each agent is equipped
with a rotary servo and a pressure sensor. The goal of the
agents is to grasp a convex object, e.g. a balloon, such that
all of the agents apply equal pressure θp(θmin ≤ θp ≤ θmax).

The illustration of the algorithmic procedure is shown as
Figure 10. It can be divided into the following steps.

Step 1 (Initialization) One of the agents starts sensing the
object. When the sensor reading is in between θmin and θmax,
it starts sending messages to neighboring agents. Upon

receiving a message, each agent propagates the message
and its ID to neighboring agents (shown in Figure 10(1)).
We denote Ri as the agent ID from which agent ai receives
the message and Si as the ID of the agent to which it sends
the message.

Step 2 (Sensing) Each agent starts sending its pressure sen-
sor reading to its neighbors (as shown in Figure 10(2)).
We note that this sensory reading message is passed only
between an agent and its immediate neighbors.

Step 3 (Actuation) Each agent computes its new actuation
state based on the sensor readings that it receives from its
neighbors. The control law run by each agent is

xi(t + 1) = xi(t) + α·(θRi − θi) . (15)

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

14 The International Journal of Robotics Research 00(000)

Agents iterate between Step 2 and Step 3 until all agents
have reached the desired state. When the robot is perturbed
by exogenous force, it goes back to Step 2.

The control law we showed in Equation (15) satisfies
condition 1, since sensory feedback g(·) = θRi − θi = 0
only when agent ai’s sensor reading is equal to its neigh-
bor aRi . In addition, g is also anti-symmetric. However, it is
non-trivial to evaluate whether the control law satisfies
condition 2. This is primarily due to the fact that all agents
are connected together in a chain and changing an agent’s
actuation parameter can potentially change more than its
own sensor state. We refer readers to the appendix of Yu
and Nagpal (2009) for details of the convergence proof.

Most of the controllers designed for grasping tasks have
used a centralized architecture. The decentralized and mod-
ular robot approach that we propose here allows the whole
system to adapt to local perturbations more efficiently. In
addition, given any initial contacting module, the gripper
is able to form a grasping configuration that conforms to
the shape of the object. This control scheme is also appli-
cable to different kinds of gripper configurations. We pro-
vide demonstrations of these capabilities in the following
experimental results.

Experimental Results Here, we present an empirical evalu-
ation of this control framework when applied to a modular
gripper. Agents are programmed to apply equal pressure
on a balloon. We first assess its adaptability towards repet-
itive perturbations. We then test the convergence proper-
ties of Equation (15) under different initial conditions and
different numbers of agents.

Adaptation Towards Perturbations. After all agents achieve
the desired state, we start applying an external force on
the gripper. Figure 11 shows ε versus time as the grip-
per encounters four different perturbations. We can see that
ε decreases to less than 3% after 50–70 iterations in each
case. This shows that our decentralized control law can
efficiently lead agents to recover from exogenous perturba-
tions. We specifically note that the gripper achieves faster
adaptation than the pressure-adaptive column is due to: (1)
each agent’s actuation has a long-range effect, so an agent
is likely to assist more than its neighbors in the process; (2)
the rotary servos we use here have better precision than the
linear actuators.

Different Initial Conditions. We connect the agents to form
a “cross” configuration as shown in Figure 12(a)–(d). We
let different agents start to touch the balloon to examine the
system’s behavior under different initial conditions. Figure
12(a)–(h) shows a sequence of robot configurations while
grasping the object. We use k to denote the first activated
(contacted) agent’s index. Let θi(t) be the pressure sensor
reading of agent i at time t. After the first contact between
the object and the robot, the object is held in place. This
will lead all other agents to approach agent ak’s sensor read-
ing θk(t) while reaching the consensus state. Therefore, we

define the percentage from achieving the task, ε, as a ratio
of the current distance for all agents to reach the first con-
tacted agent’s sensor reading θk(t) to the initial distance.
This can be formally written as

ε =
∑

i ‖θi(t) −θk(t) ‖∑
i ‖θi(0) −θk(0) ‖ .

Figure 13 shows ε’s value changing over time. We can
see that the agents are capable of converging to ∼ 3% from
completing the task after 180 iterations, regardless of ini-
tial conditions. From this figure, we can also see that there
is a correlation between the position of the first activated
agent and the convergence time. The red curve shows the
case when the middle agent is first activated. The maxi-
mum number of communication hops between it and all
other agents is two. In this case, agents achieve faster con-
vergence as compared with the case where the maximal hop
is three and four, respectively (blue and green curve).

Scalability. We further evaluate the algorithm’s scalability
with the number of agents. In Figure 14, we increase the
number of agents from five to nine. We can see from the
figure that there is no significant increase in convergence
time when we increase the number of agents. Here ε con-
verges to less than 3% after 150 iterations in all three cases.
However, we can see that the convergence time is slightly
shorter in the five-agent case in which the diameter of the
agent network is only one (in contrast to two in the other
cases). This coincides with theoretical results in Section
6 that decreasing the diameter of the agent network can
increase the convergence speed.

7.4. Other Distributed Constraint-maintenance
Tasks

The framework we propose here can be used to solve more
tasks than consensus-type tasks as presented in the previ-
ous sections. In Equations (13), (14), and (15), we set either
θ∗

ij = 0 or �∗
ij = 0, for all i, j ∈ Ni such that agents eventu-

ally achieve the same (sensory) states. In fact, if θ∗
ij �= 0

or �∗
ij �= 0. This allows us to use such a framework to

solve a wider range of tasks. Furthermore, the connectiv-
ity graph of agents can be extended from 2D planar graphs,
e.g. self-balancing table or terrain-adaptive bridge, to three-
dimensional connectivity. Here we illustrate two of these
tasks.

3D Relief Display This is an application where a modular
robot forms arbitrary shapes as a novel form of 3D media
and visualization. When modules are connected in a way
such that some modules form a flexible surface while the
rest form the supporting structure of the surface, they can
act as a “relief” display. One key advantage of our approach
is that once the desired shape is formed, the system will
autonomously maintain the desired shape even if the under-
lying terrain is dynamically changing. As shown in Figure

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Yu and Nagpal 15

Fig. 11. After the robot has reached the desired state, we constantly perturb the gripper by applying force. The robot is able to re-adapt
after being perturbed.

Fig. 12. (a)–(d) Different initial conditions for the grasping task. The robot is capable of completing the task irrespective of initial
conditions. (e), (f) Scalability experiment. More modules are added to the robot. Empirically, the robot scales successfully to the
number of module agents. (g), (h) The robot performs the grasping task with a different gripper configuration.

15(a), to form the desired shape, we need to specify each
surface agent’s local inter-agent constraints according to the
corresponding location of the desired shape. Figure 15(a)–
(c) shows several different complicated shapes that are ren-
dered in simulation when we have 16,000 modules in our
system.

Adaptive Building Structure In the previous applications,
we connect modules to form a surface. One interesting
futuristic application is to extend modules’ connectivity to
three dimensions to form an adaptive building structure. In
this simulation (Figure 15(d)), modules form several sur-
faces that correspond to different levels of the building
while some linear modules form the supporting pillars of

the building. From the figure we can see that the build-
ing floors autonomously adapt to remain level while the
underlying terrain changes.

8. Discussion

In this section, we provide a discussion of several promis-
ing extensions and potential limitations of our approach. We
then discuss, in a larger scope, tradeoffs between this decen-
tralized self-organizing and centralized hierarchical control
approaches. This discussion provides deeper insights into
the application scope of this approach, as well as its pros
and cons.

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

16 The International Journal of Robotics Research 00(000)

Fig. 13. Experiments with different initial conditions. After ∼ 180 iterations, agents are capable of achieving less 3% distance from the
consensus state in all three cases.

Fig. 14. Scalability experiment. The decentralized algorithm is scalable with the number of agents. On the other hand, the network
structure might affect the convergence speed. In the seven- and nine-agents cases, the diameter of the network is two and it leads to
longer times for the robot to complete the task.

8.1. Potential Extensions

When modules are equipped with different sensors and
actuators, there are many other applications that can be gen-
eralized from this framework. Here, we illustrate some of
them. (1) Light-adaptive modular panel: we can change the
pressure sensors we mount on the robot to light sensors.
Each agent is programmed to achieve the same light absorp-
tion as its neighbors. A similar concept can be applied to
many environmental sensory adaptation tasks. (2) Adaptive
prosthetic structure: existing prosthetic devices for children
require manual reconfiguration to adapt to limb growth. If
force (pressure) sensors are mounted on the device, it is pos-
sible to construct a self-reconfigurable prosthetic device.
(3) A similar concept can be applied to a support struc-
ture for plants. The structure is capable of self-adaptation
based on the growth of the plant and lighting conditions. (4)
The described framework can also be potentially applied to
solve dynamic tasks, such as locomotion. One straightfor-
ward generalization is to view dynamic tasks as a sequence

of self-adaptations. In Yu and Nagpal (2009), we described
how one can use this framework to program a strut-based
modular robot to achieve adaptive locomotion.

8.2. Potential Limitations and Challenges

The type of tasks we illustrate with this framework share
one similarity: they can be expressed as a single consen-
sus state, e.g. modular gripper grasping tasks. This is the
main limitation of the current framework. To further extend
such a framework to solve more sophisticated tasks, it is
necessary to have a mechanism that can decide among dif-
ferent consensus states (also called biased consensus states)
based on different external states. For example, we might
need different pressure distributions for a modular grip-
per to optimally grasp different types of objects, instead of
using a uniform pressure distribution to grasp all objects.
Understanding the scope of self-adaptation tasks and of this
limitation is an important future direction of this research.

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Yu and Nagpal 17

Fig. 15. Our framework can be viewed more generally as a distributed constraint-maintenance framework. (a) A human face shape can
be specified with inter-agent constraints. The shape is formed by 16,000 modules. (b), (c) Several different shapes generated from the
same task specification scheme as (a). (d) Agents can be connected to form 3D structures. An adaptive-building structure formed by the
modules, and the gray region indicates uneven terrain.

One limitation of this approach is that the agent task
must be specified in advance. In the tasks where global goal
require all agents achieve the same states, it is easy to spec-
ify such tasks in terms of local constraints. This is primarily
due to the fact that such global goals are complete when all
agents achieve the same state as its neighbors. For global
goals that need agents to achieve different states, translating
a global tasks into local constraints amongst agents can also
be challenging. One interesting future direction is to design
a task compiling framework to automatically generate local
constraints from global objective functions. While using
generalized distributed consensus algorithm, one needs to
appropriately design feedback function g based on three
principles we present here. Another interesting direction is
to automate this feedback function design process to derive
g based on our desired task.

In some cases, the agent’s structure might change over
time and the original task specification might no longer
be valid. In the case when all agents need to reach con-
sensus states, agents’ task specifications are not required
to changed (since �ij = 0 for all i, j). However, it is still
hard to achieve role replacement in biased consensus tasks

(�ij �= 0 for all i, j). One interesting future direction would
be designing a mechanism that allows agents to change their
modular structures arbitrary and dynamically assign task
accordingly.

8.3. Self-organizing versus a Centralized
Approach

An important question in networked multi-agent systems
is whether to use a decentralized self-organizing approach,
such as that described here, where agents iteratively com-
municate and react to arrive at a solution, or to use a cen-
tralized tree-based approach where a root agent collects all
of the information from other agents. This question is not
only relevant to modular robots, but also to robot swarms
and sensor networks. It also applies to many problems,
from shape formation to time synchronization. Using our
results, we can describe the tradeoffs between these two
approaches.

For the centralized algorithm, we assume that a root
agent collects all of the information from all other agents
using a spanning tree, computes a final state for every

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

18 The International Journal of Robotics Research 00(000)

agent, and then disseminates the results back to them. This
results in two costs: (a) a communication cost of collect-
ing/disseminating information; and (b) a computation cost
for the root node. In most homogenous multi-agent sys-
tems, each agent has fixed communication and computation
power. For the kinds of tasks we consider here, communi-
cation is often a more severe bottleneck: if an agent can
only collect a constant amount of information per unit time,
then the time to collect all the agents’ states is O(n) (n:
number of agents) and not O(d) (d: diam(G)). This cost
is paid for every shape change, regardless of the distance
between the initial and desired states. This results in poor
performance in the case of small perturbations, where infor-
mation must travel all the way to the root agent before it
can be resolved. In contrast, the communication cost of
the decentralized algorithm described here is O(t) (t: itera-
tion number), which depends on both topology and distance
from goal. The relationship between topology and perfor-
mance in some cases is worse than the centralized case.
However, if the distance from goal is small (e.g. a small per-
turbation or slowly changing environment) then the system
reacts rapidly in only a few iterations even when n is large.
Figure 4) shows the self-organizing approach’s capabilities
of adaptation to large and small perturbations. We can see
from the figure that the number of iterations required to
achieve the task remains low in small perturbation cases,
even when we significantly enlarged the size of the network.

This suggests that for consensus-like problems, while
decentralized algorithms may pay a significant start-up cost
to achieve a steady state, they are extremely reactive to
perturbations. Thus, they are more appropriate when the
goal is to maintain constraints over long periods of time
under uncertain and changing conditions, rather than pro-
duce a solution once (as shown in applications of Section
7). Finally, they are more robust and less complex to imple-
ment in situations where agent errors and topology changes
are common.

9. Conclusions

We have presented a self-organizing framework inspired
by biological collective behaviors for self-adaptation tasks
in modular robotics. We show that modular robots’ adap-
tive tasks can be captured by distributed constraint mainte-
nance when the robot can be abstractly viewed as a sensor–
actuator network. Such a formulation allows the robot to
exploit its distributed sensors to efficiently adapt to vari-
ous environmental conditions, similar to the way biological
systems achieve scalable self-adaptation. In addition, it can
be implemented in a wide range of modular robot systems,
including those with indirect relationships between their
sensors and actuators.

We also have presented unified controller design prin-
ciples for our framework and have further analyzed the
various theoretical properties of this class of algorithms,
including correctness, scalability, and robustness. In com-
parison with a centralized approach, this approach has a

strong advantage in robustness and reactivity. Based on our
theoretical understanding, we implemented our framework
in a diverse set of modular robot applications, including:
(1) self-adaptive structures; (2) a pressure-adaptive column;
(3) an adaptive modular gripper; (4) other sensor–actuator
network applications, e.g. an adaptive prothetic device. Our
results show that such a control scheme is robust toward
real-world sensor and actuator noise. These applications
represent a small subset of what is achievable within this
framework.

We plan to extend this work in several directions. First,
we have illustrated several potential applications to which
we can further apply this framework, including a self-
adaptive support structure. Second, we are interested in
applying this framework to other distributed robotics appli-
cations beyond modular robots, such as a team of mobile
robots. Finally, we are interested in exploring more deeply
the advantages and disadvantages of decentralized algo-
rithms. One potential control solution based on this study is
a mixed strategy that is composed of centralized and decen-
tralized controllers. This allows us to exploit the strengths
of both approaches. For example, a humanoid robot utilizes
a centralized controller to reach an object, and decentral-
ized controllers run on the gripper, allowing it to grasp the
object.

Acknowledgements

This research is supported by an NSF EMT Grant (No.
0829745) and Harvard’s Wyss Institute for Biologically-
Inspired Engineering.

Notes
∗ The preliminary version of this work was described in Yu and

Nagpal (2008, 2009).
1 For example, in sensor networks time synchronization, an

agent can observe its neighbors’ firing time and thus control
its own firing time.

2 For example, if the agent’s actuator is a linear actuator, xi(t)
would represent the length of the actuator. If the actuator is a
rotary one, it would represent the angle of the actuator.

3 We can show that A and L have the same eigenvectors. Let
vi be the ith eigenvector of L and μi = 1 − αλi. Here
Lvi = λivi ⇒ Avi = (I − αL) vi = (1 − αλi) vi = μivi. In
addition, μ1 = 1 is a simple eigenvalue of A with associated
eigenvector: 1.

4 We note that the assumption that A(t) is symmetric (condi-
tion 3) can be relaxed, but the upper bound on convergence
rate is less tight. The proof of this case is based on the theory
of non-homogenous stochastic matrix products (Seneta 1981);
the product A(t) · · · A(2) A(1) will converge to a rank-one
matrix with exponential rate. The recent result in Cao et al.
(2008) explicitly determines an upper bound on convergence
rate.

5 In the case of one or two initial contacting agents, we provide
slight external support to the object to prevent the rest of the
agents from contacting the object.

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Yu and Nagpal 19

6 The ith element of X∗: x∗
i + ∑

aj∈Ni
φij(t) (x∗

j − x∗
i) −∑

aj∈Ni
φij(t) �∗

ij = x∗
i .

7 Since all agents are identical and execute the same control law,
it is safe to switch their indices.

References

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y. and Cayirci,
E. (2002). Wireless sensor networks: a survey. Computer
Networks, 38: 393–422.

Bertsekas, D. P. and Tsitsiklis, J. (1989). Parallell and Distributed
Computation. Upper Saddle River, NJ: Prentice-Hall.

Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Mal-
one, W., Napp, N. and Nguyen, T. (2005). Programmable
parts: a demonstration of the grammatical approach to self-
organization. Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Alberta,
Canada, pp. 3684–3691.

Bojinov, H., Casal, A. and Hogg, T. (2000). Emergent structures in
modular self-reconfigurable robots. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA),
volume 2, San Francisco, CA, pp. 1734–1741.

Bongard, J., Zykov, V. and Lipson, H. (2007). Resilient machines
through continuous self-modeling. Science, 314(5802):
1118–1121.

Cao, M., Morse, A. S. and Anderson, B. D. O. (2008). Reaching a
consensus in a dynamically changing environment: A graphical
approach. SIAM Journal on Control and Optimization, 47(2):
575–600.

Chung, F. R. K. (1994). Spectral Graph Theory. Providence, RI,
American Mathematical Society.

Degesys, J., Rose, I., Patel, A. and Nagpal, R. (2007). Desync:
self-organizing desynchronization and tdma on wireless sensor
networks. In Proceedings of the Sixth International Confer-
ence on Information Processing in Sensor Networks (IPSN),
Cambridge, MA, pp. 11–20.

Fax, J. A. and Murray, R. M. (2004). Information flow and coop-
erative control of vehicle formations. IEEE Transactions on
Automatic Control, 49(9): 1465–1476.

Goldstein, S. C., Campbell, J. and Mowry, T. C. (2005). Pro-
grammable matter. IEEE Transactions on Computer, 38(6):
99–101.

Groß, R., Bonani, M., Mondada, F. and Dorigo, M. (2006).
Autonomous self-assembly in swarm-bots. IEEE Transactions
on Robotics, 22(6): 1115–1130.

Jadbabaie, A., Lin, J. and Morse, A. S. (2003). Coordination
of groups of mobile autonomous agents using nearest neigh-
bor rules. IEEE Transactions on Automatic Control, 48(6):
988–1001. http://dx.doi.org/10.1109/TAC.2003.812781.

Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita,
K. and Kokaji, S. (2004). Distributed adaptive locomotion
by a modular robotic system, M-Tran II. In Proceedings
of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), volume 3, Sendai, Japan,
pp. 2370–2377.

Lucarelli, D. and Wang, I.-J. (2004). Decentralized synchroniza-
tion protocols with nearest neighbor communication. In Pro-
ceedings of the 2nd international Conference on Embedded
Networked Sensor Systems (SenSys), New York, NY, 62–68.
http://dx.doi.org/10.1145/1031495.1031503.

Lyder, A., Garcia, R. and Støy, K. (2008). Mechanical design
of Odin, an extendable heterogeneous deformable modular
robot. Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Nice, France,
pp. 883–888.

Moeckel, R., Jaquier, C., Drapel, K., Upegui, A. and Ijspeert,
A. (2005). Yamor and bluemove—an autonomous modular
robot with bluetooth interface for exploring adaptive locomo-
tion. Proceedings of International Conference on Climbing
and Walking Robots and the Support Technologies for Mobile
Machines (CLAWAR), Istanbul, Turkey, pp. 685–692.

Mohar, B. (1991a). Eigenvalues, diameter, and mean distance in
graphs. Graphs and Combinatorics, 7: 53–64.

Mohar, B. (1991b). The Laplacian spectrum of graphs. Graph
Theory, Combinatorics, and Applications. New York, John
Wiley & Sons, Inc., pp. 871–898.

Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita,
K. and Kokaji, S. (2002). M-TRAN: Self-reconfigurable mod-
ular robotic system. IEEE/ASME Transaction on Mechatronics,
7(4): 431–441.

Okubo, A. (1986). Dynamical aspects of animal grouping:
Swarms, schools, flocks, and herds. Advances in Biophysics,
22: 1–94. http://dx.doi.org/10.1016/0065-227X(86)90003-1.

Olfati-Saber, R. (2006). Flocking for multi-agent dynamic sys-
tems: Algorithms and theory. IEEE Transactions on Automatic
Control, 51(3): 401–420.

Olfati-Saber, R., Fax, J. A. and Murray, R. M. (2007). Con-
sensus and cooperation in networked multi-agent systems.
Proceedings of the IEEE, 95(1): 215–233. http://dx.doi.
org/10.1109/JPROC.2006.887293.

Pamecha, A., Stein, D. and Chirikjian, G. (1996). Design and
implementation of metamorphic robots. Proceedings of the
1996 ASME Design Engineering Technical Conference and
Computers in Engineering Conference, Irvine, CA.

Potts, W. K. (1984). The chorus-line hypothesis of manoeu-
vre coordination in avian flocks. Nature, 309(5966): 344–345.
http://dx.doi. org/10.1038/309344a0.

Reynolds, C. W. (1987). Flocks, herds, and schools: a distributed
behavioral model. Computer Graphics, 21(4): 25–34.

Rus, D., Butler, Z., Kotay, K. and Vona, M. (2002). Self-
reconfiguring robots. Communications of the ACM, 45(3):
39–45.

Schwager, M., Slotine, J.-J. E. and Rus, D. (2008). Consensus
learning for distributed coverage control. Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), Pasadena, CA, pp. 1042–1048.

Seneta, E. (1981). Non-negative Matrices and Markov Chains.
Berlin, Springer-Verlag.

Shen, W.-M., Krivokon, M., Chiu, H., Everist, J., Rubenstein,
M. and Venkatesh, J. (2006). Multimode locomotion for
reconfigurable robots. Autonomous Robots, 20(2): 165–177.

Shen, W.-M., Will, P., Galstyan, A. and Chuong, C.-M. (2004).
Hormone-inspired self-organization and distributed control of
robotic swarms. Autonomous Robots, 17(1): 93–105.

Shimizu, M., Ishiguro, A. and Kawakatsu, T. (2005). Slimebot: A
modular robot that exploits emergent phenomena. In Proceed-
ings of the IEEE International Conference on Robotics and
Automation (ICRA), Barcelona, Spain, pp. 2982–2987.

Støy, K., Shen, W.-M. and Will, P. (2002). How to make
a self-reconfigurable robot run. Proceedings of the First

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

20 The International Journal of Robotics Research 00(000)

International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), Bologna, Italy, pp. 813–820.

Turgut, A., Celikkanat, H., Gokce, F. and Sahin, E. (2008). Self-
organized flocking with a mobile robot swarm. Proceedings of
the International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), Estoril, Portugal, pp. 39–46.

Vona, M. and Rus, D. (2001). Crystalline robots: Self-
reconfiguration with compressible unit modules. Autonomous
Robots, 10(1): 107–124.

Yim, M., Eldershaw, C., Zhang, Y. and Duff, D. G. (2004).
Limbless conforming gaits with modular robots. International
Symposium on Experimental Robotics (ISER), Singapore.

Yu, C., Haller, K., Ingber, D. and Nagpal, R. (2008). Morpho: A
self-deformable modular robot inspired by cellular structure.
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Nice, France, pp.
3571–3578.

Yu, C.-H. and Nagpal, R. (2008). Sensing-based shape forma-
tion tasks on modular multi-robot systems: A theoretical
study. Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), Estoril,
Portugal, pp. 71–78.

Yu, C.-H. and Nagpal, R. (2009). Self-adapting modular robotics:
A generalized distributed consensus framework. Proceedings
of ICRA.

Yu, C.-H., Willems, F.-X., Ingber, D. and Nagpal, R. (2007).
Self-organization of environmentally-adaptive shapes on a
modular robot. Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), San
Diego, CA, pp. 2353–2360.

Zykov, V., Mytilinaios, E., Adams, B. and Lipson, H. (2005).
Self-reproducing machine. Nature, 435(7038): 163–164.

Appendix A. Proof of Theorem 1

We first show that analyzing Equation (6) is equivalent to
analyzing a linear dynamical system without the bias vector.
The optimality condition:

X ∗ = A · X ∗ + b̃ (16)

can be rewritten as αL ·X ∗ = b̃. We use the graph Laplacian
property that when G is connected, rank(L) = n − 1 with
null(L) = 1. We can add an additional constraint to the sys-
tem based on mass conservation property of the agent state:∑

i xi(0) = ∑
i x∗

i = C (since A is a row stochastic matrix,
and

∑
i b̃i = 0). The new linear system with the additional

constraint becomes αL′ · X ∗ = b̃′. Since the new constraint
lies in the null space of L, rank(L′) = n and there exists a
unique X ∗ for every initial condition X (0). We subtract the
optimality condition from Equation (6):

Y (t + 1) = A · Y (t) (17)

where Y (t) = X (t) −X ∗. The following proof follows the
procedure of Olfati-Saber et al. (2007). Since L is a real
symmetric matrix, the well-known Courant–Fischer theo-
rem yields

λ2(L) = min
‖x‖=1, x⊥1

xTLx

xTx
.

As Y (t)T ·1 = 0 for all t, we can utilize the results from
Olfati-Saber et al. (2007) and show that

max
Y (t)

Y (t)T AY (t)

Y (t)T Y (t)
= μ2(A) < 1, (18)

where μ2(A) denotes the second largest eigenvalue of
A. Define a Lyapunov function V (t) = ∑

i(xi − x∗
i)2 =

Y (t)T Y (t). Now, following Equation (18), we obtain

V (t + 1) =(AY (t))T (AY (t)) = Y (t)T A2Y (t)

<(μ2(A))2 Y (t)T Y (t) = (μ2(A))2 V (t) . (19)

Here Y (t) converges to zero (X (t) converges to X ∗) with
exponential rate at least μ2(A) < 1.

Appendix B. Proof of Theorem 2

The A(t) matrix in Equation (9) can be written as I − Lw(t)
where Lw(t) is a weighted graph Laplacian matrix. The
properties of the weighted graph Lalpacian are similar to
those of the standard Laplacian (Mohar 1991b). When G
is connected, rank(Lw(t)) = n − 1 with null(Lw(t)) = 1.
Since

∑
i b̃(t) = 0 and A(t) is stochastic for all t, the mass

conservation constraint still applies. We can solve X ∗ with
the same procedure as the proof of Theorem 1 with respect
to a particular A(t). We note that the obtained X ∗ satisfies
x∗

j − x∗
i = �∗

ij for all ai, aj ∈ Ni, the optimality condition

X ∗ = A(t) X ∗+b̃(t) will hold for all6 t. We can again obtain
the new dynamics system:

Y (t + 1) = A(t) Y (t) .

Since Lw(t) is a real symmetric matrix for all t. Applying
the Courant–Fisher theorem to the analogously defined Lya-
punov function, a similar derivation to Equations (18) and
(19) yields

V (t + 1) ≤(μ2(A(t)))2 V (t) ≤(max
t

μ2(A(t)))2 V (t) .

Therefore, the convergence rate is at least the maximal
value of the second largest eigenvalues among the A(t).

Appendix C. Proof of Theorem 4

Expanding out the definition of 2-norm, we have

‖X (0) −X ∗‖2 =
∑

i

(xi(0) −x∗
i)2 (20)

=
(
∑

i

x2
i (0)

)
+
(
∑

i

(x∗
i)2

)

−2
∑

i<j

xi(0) x∗
j . (21)

Since xi(t) > 0 for all t, both xi(0) and x∗
i must be non-

negative. Thus,
∑

i<j xi(0) x∗
j is non-negative. Similarly,

∑
i x2

i (t) ≤ (∑
i xi(t)

)2
for all t. Hence,

‖X (0) −X ∗‖2 ≤
(
∑

i

xi(0)

)2

+
(
∑

i

x∗
i

)2

.

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Yu and Nagpal 21

By the conservation of mass principle mentioned above,∑
i x∗

i = ∑
i x(0)i = C, so we have

‖X (0) −X ∗‖2 ≤ 2C2.

Taking square roots of both sides of the above and substi-
tuting into Equation (11) yields the result.

Appendix D. Proof of Theorem 5

We have seen in Theorem 1 that we can always convert
biased consensus dynamics, i.e. b̃ �= 0, to equivalent con-
sensus dynamics with b̃ = 0. We therefore only need to
prove the case when b̃ = 0.

We first construct collective dynamics as in Equation (6).
We use ak to denote the agent whose actuator fails in the
process. It thus has a fixed state x∗. We use n to denote the
number of agents in the system. For the sake of proof con-
venience, we switch the index of agent ak with the last agent
an. Here ak and an’s set of neighbors7, Nk and Nn, are also
correspondingly changed. an is now the agent with actu-
ation failure. Since agent an’s state is fixed at x∗, agents’
states can be written as a n-dimensional column vector:
X (t) = (x1(t) , . . . , xn−1(t) , x∗)′.

We can further write the collective dynamics of the
agents as follows:

X (t + 1) = A · X (t) =
t∏

m=1

A · X (1) . (22)

This can be further expanded as follows:

t∏

m=1

A · X (1) =
(

F L
0 1

)t

X (1) (23)

= M(t) ·X (1) =
(

P(t) Q(t)
0 1

)
X (1) ,

where F is an (n−1) ×(n−1) matrix and Fii = 1−α · |Ni|,
and Fij = α. Here L is an n − 1 column vector and Li = α

if ai ∈ Nn, where Nn is simply the set of neighbors of the
failed agent. To prove the convergence property of Equation
(22), we first define:

• matrix maximum norm, ‖M‖max = maxi
∑

j Mij;
• matrix minimum norm, ‖M‖min = mini

∑
j Mij;

• dmax, the maximal hop distance between an agent and
the failed agent.

To prove convergence, we use the property that the prod-
uct of row stochastic matrices is still row stochastic. We can
see that A is a row stochastic matrix with a positive diago-
nal (Aij ≥ 0 and

∑
j Aij = 1, for all i), thus M(t) is also

row stochastic with
∑

j Mij(t) = 1, for all i. We can further
expand

Q(t) =
t∑

m=1

Fm−1 · L. (24)

Since the failed agent can still communicate, the communi-
cation graph G stays connected. From Equation (24), we can
immediately see that Fdmax+1 > 0 and thus ‖Q(t) ‖min > 0
when t ≥ dmax + 2. We can also see from Equation (24)
that ‖Q(t) ‖min monotonically increases with t after time

dmax + 2. Since M(t) is row stochastic,
(∑

j Pij(t)
)

+
Qi(t) = 1, for all i. Therefore, 0 < ‖P(t) ‖max < 1.
Since ‖Q(t) ‖min monotonically increases with t after time
dmax + 2 and ‖P(t) ‖max + ‖Q(t) ‖min = 1, the maximum
norm of P(t) decreases at least every dmax + 2 time steps.
Thus, limt→∞ ‖P(t) ‖max = 0. This leads to the conclusion
that limt→∞ Q(t) = 1 ⇒ limt→∞ xi(t) = x∗, for all i. All
agents will eventually have the same state x∗ as the failed
agent an.

Appendix E. Proof of Theorem 6

The proof of Theorem 6 follows the same procedure as The-
orem 5. We now have more than one agent that is fixed at
certain states due to actuation malfunction. Similarly, we
index these k agents from an−k+1, an−k+2, . . . , an and their
fixed states are x∗

1, x∗
2, . . . , x∗

k . We can also write down the
collective dynamics in the following form:

X (t + 1) = A · X (t) =
t∏

m=1

A · X (1) =
(

F L
0 I

)t

X (1)

= M(t) ·X (1) =
(

P(t) Q(t)
0 I

)
X (1) . (25)

Different from the proof of Theorem 5, matrices F and
P(t) are now (n − k) ×(n − k) matrices and L and Q(t) are
now (n − k) × k. We denote dmax as the maximal hop
distance between an agent and its closest failed agent in
our graph G. We can follow the same procedure as The-
orem 5 to show that ‖Q(t) ‖min > 0 for t ≥ dmax + 2.
Using the stochastic matrix property, we again show 0 <

‖P(t) ‖max < 1 for t ≥ dmax +2. This allows us to show that
limt→∞ ‖P(t) ‖max = 0 and

∑
j Qij(t) = 1 for t → ∞.

Since Q(t) is now multi-column, we need to show that
each element in Q(t) converges to a stable state: Qij(t) →
Q∗

ij, for all i, j. Owing to the fact that the bottom-right sub-
matrix of M(t) is a k × k identity matrix, we can get
Qij(t) ≥ Qij(t − 1) for all i, j; and Qij(t) is monotonically
nondecreasing with t for all i, j. Therefore, as

∑
j Qij(t)

approaches 1, Qij(t) will also approach a fixed value Q∗
ij,

for all i, j. Since each failed agent’s fixed state can be dif-
ferent, each agent converges to a potentially different fixed
state:

lim
t→∞ xi(t) =

∑

j

Q∗
ijx

∗
j .

Appendix F. Proof of Theorem 7

The proof of Theorem 7 is the same as Theorem 6 of
Olfati-Saber et al. (2007). Olfati-Saber et al. (2007) prove
the case when the agent topology is dynamic and periodi-
cally connected, all agents’ states will converge to a single

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

22 The International Journal of Robotics Research 00(000)

value. The periodically connected property (due to tempo-
rary communication failures) we assume here is the same
as Olfati-Saber et al. (2007) which states that the union of
all graphs over a finite sequence of intervals are connected.

Appendix G. Convergence Rate versus
Topology

We provide several graph topological factors versus λ2

(μ2 = 1 − αλ2). We define several factors that are not
mentioned in the article. The mean distance between two
vertices:

ρ̄ = 1

n(n − 1)

∑

∀u,v∈V (G),u�=v

d(u, v) .

The maximal degree sum of two connected vertices: d+
max =

max{deg(u) + deg(v) | uv ∈ E(G) }.
We can summarize λ2’s relationships with various

topological factors from (Mohar 1991a; Chung 1994) as
follows:

Best Case Worst Case

Number of agents (n) O(D
√

n) O(1/n)
Diameter (D) O(1/D) O(1/D)
Mean distance (ρ̄) O(1/ρ̄) O(1/ρ̄)
Maximal degree (dmax) O(dmax) n/a
Maximal degree sum (d+

max) O(d+
max) n/a

 at Harvard Libraries on December 9, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

