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Abstract— Several animal species self-organize into large
groups to leverage vital behaviors such as foraging, construc-
tion, or predator evasion. With the advancement of robotics
and automation, engineered multi-agent systems have been
inspired to achieve similarly high degrees of scalable, robust,
and adaptable autonomy through decentralized and dynamic
coordination. So far however, they have been most successfully
demonstrated above ground or with partial assistance from
central controllers and external tracking. Here we demonstrate
an underwater robot collective that realizes full spatiotempo-
ral coordination. Using the example of fish-inspired evasive
maneuvers, our robots display alignment, formation control,
and coordinated escape, enabled by real-time on-board multi-
robot tracking and local decision making. Accompanied by a
custom simulator, this robotic platform advances the physically-
validated development of algorithms for collective behaviors
and future applications including collective exploration, track-
ing and capture, or environmental sampling.

I. INTRODUCTION

Predation plays an important role in balancing ecosys-
tems and is one driver of evolution, which pushes animal
populations toward those individuals or groups which have
evolved successful escape strategies [1], [2]. Such escape can
be witnessed from tiny plankton [3] to bird flocks [4] and
fish schools [5], [6]. Particularly impressive are social preys
that cooperate through local interactions to evade predators
collectively. Fish, for example, display several evasive be-
haviors, ranging from the fountain maneuver [5], [6] to flash
expansion and bait balls [7]. In doing so, schooling fish
demonstrate collective vigilance and resilience that leverages
the cognition and actions of all individuals [5], [6].

For robotic swarms, the ability to escape threats or moving
obstacles exemplifies complex dynamic coordination that
goes beyond simple and well-studied flocking [8], [9], [10].
With such coordination, a group of underwater robots de-
ployed to monitor coastal environments like coral reefs and
harbors, could, for instance, react cohesively to circum-
navigate oncoming traffic. Similar maneuvers would also
be useful for aerial drone swarms. Current aerial swarms,
however, typically still rely on assistive technologies such as
centralized base stations, motion capture, and the global posi-
tioning system (GPS) [11], [12], [13], [14], [15], [16]. These
technologies may be unavailable to underwater collectives,
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Fig. 1. Evasive maneuvers. (A) A fish shoal reacts to a predatory dolphin
by performing a fountain maneuver (credit: iStock). (B) Four Bluebots
(130 mm in length) react to a manually guided predator surrogate. Initially
self-aligned and facing to the left (t = 0s), the robots embark on fountain-
shaped trajectories to evade the predator, which inadvertently moves through
the middle of the shoal (t = 2s until t = 16s). Once the danger has passed,
the Bluebots regroup and realign (t = 36s). Color-coded initial positions
and trajectories were added to the top left and bottom right snapshots.

which further restrains their coordination [17], [18], [19],
[20]. Overall, robotic swarms have not been able to reproduce
the high degree of scalable, robust, and adaptable autonomy
that natural systems achieve through self-organization [21].

To narrow this gap, we aimed to mimick the dynamic
and parallel coordination of fish during predator attacks
(Figure 1) with an underwater robot collective, using the
example of the fountain maneuver [5], [6]. When a fish
school performs a fountain maneuver, the fish typically
encircle the predator and reunite behind it, taking advantage
of its high inertia and letting it swim through the void. Many
fish species use visual observations of nearby neighbors [22],
[23], [24], [25], [26] and have evolved specialized visual pat-
terns called schooling marks [27] for such group coordination
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Fig. 2. Blueswarm platform. (A) Autonomous multi-fin locomotion is guided by real-time on-board sensing and processing of neighboring robots
(cameras and LEDs) and diving depth (altimeter). (B) To infer the direction in which an object is observed, individual LED blobs are identified in the mn
image plane, their centroids projected onto a camera-based uvw unit sphere, and then aligned with the pqr coordinate frame attached to the robot’s center
of mass. The distance in scaled xyz coordinates to such object can be found from two object points, whose real-world distance is known, e.g., the vertical
posterior LEDs 1 and 2 of a Bluebot, which are δ = 86mm apart. (C) The relative heading ϕ can be found from a non-aligned third object point, e.g.,
the anterior LED 3, which is in the same horizontal plane and at a distance of δ = 86mm from LED 1.

that involves alignment before and dynamic evasion during
an attack. Remarkably, many schooling behaviors including
predator evasion work with limited and decentralized coordi-
nation as opposed to any one single fish permanently leading
the school [21], [28], [29], [30].

Inspired by the coordination among fish, our Bluebot
robots (Figure 2A) have three blue-light LEDs as visual bea-
cons for camera-based neighbor detection [31]. This enables
preprogrammed local decisions for collective actions without
the need for any assistive technologies. Due to their three-
dimensional (3D) multi-fin locomotion and visual perception,
Bluebots are a versatile swarm robotic platform to investigate
self-organized collective behaviors [31], as well as laboratory
surrogates to study biomimetic actuation methods [32], [33]
and fish swimming [34], [35].

The two principal contributions of this paper are: (i)
The algorithmic design and experimental validation of the
fountain maneuver on physical underwater robots, using only
local autonomous interactions. In order to achieve this, we
implemented a camera-LED vision system for the rapid
inference of position, distance, and heading of neighboring
robots. (ii) A study of the robustness and scalability of the
fountain maneuver across several dimensions. This study
is enabled through the design of a realistic Blueswarm
simulator that can be used to investigate the gaps between
ideal systems and hardware constraints.

II. RELATED WORK

A wealth of experimental and theoretical work exists on
flocking and alignment as it is observed in fish schools [36],
[37], [38], [39], [40]. Biologists have described several
advantages of schooling – among them protection from
predatory attacks – and documented a range of evasive ma-
neuvers [5], [6], [22]. Which maneuver fish choose depends
on the direction of the attack [41]; split behavior like the
fountain maneuver is triggered by attacks from behind. In
contrast, the local mechanisms for evasive behaviors have

been less well understood. Only a single descriptive model of
the fountain maneuver exists and proposes that fish visually
monitor the predator to maximize the rate of escape while
minimizing the associated energetic cost [42]. To do so, fish
are assumed to swim away from the predator at a constant
angle determined by the rear limit of their visual field. This
model was confirmed in tests with juvenile whitings [42], and
served as the basis for the evasion part of our experiments.

In the robotics domain, very few examples exist of
implementing bioinspired evasive manuevers. Fish-inspired
escape was demonstrated with centrally-controlled ground
robots [43], and variations of flash expansion and fountain
maneuvers were implemented for obstacle avoidance with
LEGO robots [44]. In computer graphics, animations of the
fountain maneuver were created, however the underlying al-
gorithms used global knowledge that would not be available
to fish or robots [45]. In contrast to evasive behaviors, basic
heading alignment has been well studied; collective align-
ment can be achieved with simple averaging algorithms [46]
and was shown with ground-based robots that use local
perception to detect neighbor headings [47] and with aerial
robots that exchange GPS headings wirelessly [14].

To the best of our knowledge, we present the first demon-
stration of the fountain maneuver with an autonomous un-
derwater robot collective, using only local visual perception
and interactions. In contrast to previous work [42], [45],
we present a fully decentralized algorithm that includes
all aspects of the fountain maneuver (alignment, detection,
evasion, regroup). Furthermore, we physically validate our
collective algorithm on Blueswarm, using only local interac-
tions and no global assistance on GPS or motion capture [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20].

III. BLUESWARM PLATFORM

Blueswarm is a 3D underwater robot collective that uses
local vision-based coordination to self-organize. Here we
focus on a few of Blueswarm’s essential and previously



introduced features [31], as well as two new aspects: (i) the
ability for robots to visually sense neighbor headings; (ii) a
hardware-specific simulation platform for wider exploration.

A. Robot design and visual inference of headings

Bluebots have four independently controllable fins to move
in 3D space; the dorsal fin and feedback from an altimeter are
used for vertical diving exclusively [48]. Two cameras cover
a near-omnidirectional field of view, in which neighboring
robots are tracked by their three blue light LEDs (Figure 2A).
To infer the relative position, distance, and heading to a
neighboring robot, the scenery of observed LEDs has to
be parsed to identify LED triplets belonging to individual
robots (Section IV). Since Bluebots are passively stable in
roll and pitch, their posterior LEDs remain stacked vertically
and their upper LEDs remain in a horizontal plane. The
posterior LEDs were used previously to infer distance to
neighboring robots [31]. The anterior LED was added for
this work, allowing the calculation of the relative heading ϕ

of a neighboring robot via projective geometry (Figure 2B-
C). The calculation finds a scaling factor λ to go from the
normalized pqr direction in which the neighboring robot
is observed to the scaled xyz real-world coordinates of the
anterior LED 3 of that robot:

λ (p3,q3,r3) = (x3,y3,z3).

It uses the fact that LED 3 is on a horizontal circle of
radius δ = 86mm around the upper posterior LED 1, whose
position (x1,y1,z1) is known from the distance estimate [31]:

(λ p3− x1)
2 +(λq3− y1)

2 = δ
2. (1)

Eq. 1 can be solved for λ with the quadratic formula. The
λ is selected for which |z1−z3| is smaller, since LEDs 1 and
3 are in the same horizontal plane. Given the xyz coordinates
of LEDs 1 and 3, the relative heading ϕ of the neighboring
robot follows from Figure 2C (Eq. 2):

ϕ = atan2
(

y3− y1

x3− x1

)
. (2)

B. Testing environments and predator

We ran experiments at two different test sites. Our in-
house testing environment is a square water tank of size 1.78
× 1.78 × 1.17 meters or 13.7 × 13.7 × 9.0 body lengths
(henceforth the small tank). A larger circular water tank at
the Olin College of Engineering had a diameter of 6.1 m and
a depth of 1.5 m (henceforth the large tank). As a predator,
we used two vertically stacked red LEDs on rod that was
moved by a human.

C. Simulator design

In order to analyze and improve the robustness and scal-
ability of our implementations for evasive maneuvers, we
built a custom simulator. Named Bluesim, that simulator
closely matches the locomotion and perception of Bluebots.
In Bluesim, a central database keeps track of positions,
velocities, relative positions, and distances of all simulated

robots. To capture the asynchrony and perception-cognition-
action cycle duration (0.5 s) of the robots, we use the
following process: In each simulation step, a robot exits a
heap, perceives its neighbors and executes its move, updates
its state in the central database, and re-enters the heap.
The heap is sorted according to an arrival process, with
robots drawing normal deviates with means equivalent to the
expected duration (0.5 s).

The dynamics of Bluebot were modelled as a non-linear
time-invariant system, and its motion expressed as a set of
second order differential equations. We simulate Bluebot’s
motion by solving these equations continuously using Euler
integration. Shown here is the equation describing transla-
tional motions along Bluebot’s x-axis (Eq. 3); translational
motions along the y- and z-axes, as well as rotations around
the z-axis follow accordingly (supplement section 1.1):

ẍ =
1
m

Fcaud− sinγpect(FPL +FPR)︸ ︷︷ ︸
thrust

− 1
2

ρcdxAxsgn(ẋ)ẋ2︸ ︷︷ ︸
drag

 ,

(3)
with known pectoral angle γpect = π/6, and water density

ρ = 998kg/m3; estimated robot inertial mass m = 0.5kg
(incl. added mass), robot drag coefficient cdx = 0.5 (cf. cone),
and reference area Ax = 3.14×10−3 m2; and empirically
found thrust forces for caudal (Fcaud) and pectoral left (FPL)
and right (FPR) fins. The fin forces vary with their actuation
frequencies, and reach up to 20 mN for the caudal and dorsal
fins, and 6 mN for each pectoral fin (resulting in a maximum
forward speed of 160 mm/s or 1.23 body lengths per second).

The perception of Bluebot was replicated by simulating its
visual range (3 m) and narrow posterior blind spot (a 50 mm
wide corridor), as well as neighbor occlusions (supplement
section 1.2). For occlusions, each robot was geometrically
simplified as a visually blocking sphere of radius 50 mm
that forms the upper base of a blocking conical frustum.
Robots outside the visual range, inside the blind spot, or
hidden behind another robot get removed from the set of
neighbors taken into account for local decision making. For
the remaining robots, positional information can be returned
in two ways: (i) at the robot level with perfect or noisy
relative distance and heading; (ii) at the LED level including
reflections at the water surface, which allows for the testing
of LED parsing and tracking algorithms.

IV. BEHAVIORAL MODELLING

As part of a fountain maneuver, fish typically encircle a
predator and realign behind it (Figure 1). We modelled the
fountain maneuver triggered by a predatory attack as a finite-
state machine: robots start in the Align state and transition
into the Evade state if they Detect a predator (Figure 3).

A. Align

During alignment, Bluebots detect and track neighboring
robots to infer their headings and rotate toward the un-
weighted average heading. Following this simple averaging



Fig. 3. Fountain maneuver finite-state machine. Yellow loop: Bluebots
transition from the Align into the Evade state if they detect a predator,
or the Search state if they see a flashing neighbor (checked in every fifth
iteration). Green loop: Flash-alerted Bluebots remain in the Search state
until they detect the predator themselves and switch into the Evade state.
Blue loop: Bluebots transition from the Evade back into the Align state if
they do not detect the predator for ten consecutive iterations.

protocol, a convergence proof (by induction) is straightfor-
ward under the assumption of accurate and fast enough per-
ception and locomotion that lead to monotonically decreasing
deviations in robot headings [46]. Our experiments provide
insight into how robustly alignment works with Bluebots’
imperfect inference of headings, and how tight a convergence
bound can be achieved. We used a Kalman filter to improve
the parsing of LEDs and tracking of neighboring robots
by estimation of their positions as opposed to our previous
work [31], which did not make use of historical observations.

B. Detect

In order to distinguish the predator (two red LEDs) from
fellow robots (three blue LEDs), a Bluebot derives the red-
to-blue ratio of all LED blobs. A predator is detected if
any two blobs have such a ratio greater than 1.2 and are
vertically stacked (from which the distance is known as well).
A Bluebot then stops aligning and starts evading the predator.

In addition, Bluebots that have detected a predator can
flash their LEDs (at 15 Hz) to alert fellow robots, pro-
grammed to check for flashing in a series of 30 images taken
in burst mode at 60 frames-per-second. Similar flashing alerts
were observed in schools of anchovy, which roll their bodies
to reflect sunlight off their shiny silver ventral sides [49].

The flashing signal as well as the distinction of LED colors
have been used in our previous work [31]. Here we tuned
both to lean toward false negatives such that evasion is not
triggered accidentally.

C. Evade

Inspired by a descriptive model of the fountain maneu-
ver [42], Bluebots evade a predator by swimming away
while keeping it visible at a constant angle of |60 ◦|. The
result is a fountain-shaped trajectory. Bluebots detecting the
predator to their right (or left) evade in counterclockwise
(or clockwise) direction, using proportional control and the
caudal and pectoral right (or left) fin. Once the predator can
no longer be seen, Bluebots complete the maneuver by going
back to alignment. We added hysteresis to provide robustness
against sporadic misses of the predator (i.e., false negatives

Fig. 4. Fountain maneuver trajectories. (A) Tracked from an experiment
with six Bluebots in the large tank. (B) Plotted from a simulation with
six robots. (A,B) Time (0 s – 27.5 s) indicated by color progression from
dark (early) to light (late); robots in blue, predator in red. Shown in the
supplemental movie.

due to occlusions), which would result in premature (and
potentially fatal) abandonment of evasion.

V. EXPERIMENTAL RESULTS

In experiments with Blueswarm, we demonstrated that
self-organized fountain maneuvers are feasible despite lim-
ited perception quality and cognition speed paired with
submerged but imperfect motion (Figures 1B and 4-5 and
supplemental movie). Simulations allowed us to repeat ex-
periments to statistically analyze robustness and scalability,
as well as to inform and refine algorithmic implementations
for the physical-robot experiments (Figures 6-8).

When fish escape during a fountain maneuver, they dart
away from the aligned school to keep the predator at a safe
distance and within their visual field [42]. Accordingly, the
three key metrics for Bluebots were: (i) stable alignment with
circular standard deviations σφ ≤ 0.5; (ii) convergence to a
prescribed viewing angle Θ at which the predator is kept; (iii)
increased distance d to the predator compared to not taking
action. Although this behavior has been described extensively
in fish literature [5], [6], [7], [42], it is mostly studied
qualitatively without standard metrics for quantification.

A. The fountain maneuver with physical robots

The fountain maneuver can be split into two main dynamic
parts: Align and Evade. Alignment allows Bluebots to move
from a shoaling into a schooling state, enhancing collective
order and preparing the school for effective predator evasion.
As such, the behavior is also useful for formation control,
for example to migrate long distances efficiently. In two
experiments (red, blue) in the large tank, seven Bluebots
aligned their absolute headings φ after approximately 15
to 20 seconds, and achieved final average circular standard
deviations σφ of 0.29 and 0.30, respectively (Figure 5A-
B and supplemental movie). During alignment, Bluebots
detected 2.14 (red) and 2.19 (blue) neighboring robots on
average (supplement section 2.1). Alignment did not improve
neighbor visibility. This suggests that visual interactions may
be equally noisy in both aligned configurations (schooling)
and non-aligned configurations (shoaling).



Fig. 5. Blueswarm escapes the predator (hardware experiments). (A-B) Alignment with seven Bluebots: The circular standard deviations σφ of the
headings converged to means of 0.29 (red) and 0.30 (blue) after approximately 15 to 20 seconds. (A) shows individual headings during the red experiment
at times marked in (B). (C-D) Escape with six Bluebots (color-coded): (C) Escape angles Θ approached |60◦| (dashed line) during the fountain maneuver;
(D) Distances d to the predator were effectively increased by active evasion (solid lines) compared to remaining idle at the initial position (dashed lines).

Fig. 6. Robustness of alignment with seven simulated robots. (A) Perception quality matters critically for alignment. Black: perfect perception; blue:
noisy headings with N (µ = 0, σ = 10◦); red: noisy headings and parsing; yellow: noisy headings, noisy LEDs with N (µ = 0, σ = 2mm), and parsing
(realistic Bluebot perception); purple: noisy headings, noisy LEDs, parsing, and reduction to binary directions (heading right/left). (B) Alignment works
robustly, regardless of the number of visible robots, but takes longer with fewer visible robots. (C) Faster cognition results in faster alignment. Cognition
speeds below 1 Hz impede the convergence of headings. All data points were averaged across N = 10 simulation runs.

Bluebot trajectories during the evasion part resembled the
fountain maneuver (Figure 4A). The robots rotated away
from the predator and approached the prescribed |60 ◦| escape
angle Θ (Figure 5C), by which they increased the minimal
distance from the predator by 156 % (Figure 5D) as opposed
to when they remained idle at their initial positions. Further
analysis is available in supplement sections 2.2-2.3.

B. Robustness and scalability from simulation

In order to provide insight into the robustness and scal-
ability of the fountain maneuver, we complemented robot
demonstrations with simulations. We varied perception qual-
ity, neighbor visibility, cognition speed, and number of robots
during alignment, and simulated different escape angles Θ.

1) Perception quality: Alignment relies on the accurate
detection of neighbor headings. In simulation, we compared
alignment with perfect perception against realistic percep-
tion, modelled after Bluebot and including noisy estimates
for LED positions and robot headings (zero-mean Gaussians
with standard deviations of 2mm and 10 ◦, respectively), as

well as imperfect LED parsing. This realistic perception was
used for the cognition and scalability simulations; alternative
noise magnitudes are shown in section 2.4 of the supplement.
As expected, we found that LED position errors are more
severe than noisy headings (Figure 6A), since parsing relies
on the heuristic that the posterior LEDs are stacked vertically,
and wrongly parsed robot LEDs introduce arbitrary head-
ings. Interestingly, simulation indicates that precise heading
information is not required for alignment: convergence with
realistic perception was similarly good, even when inferred
headings were reduced to binary information on whether
another robot is facing to the right (0 ◦ ≤ ϕ < 180 ◦) or
left (180 ◦ ≤ ϕ < 360 ◦). Alignment started to break down,
however, if noise levels on robot headings or LED positions
exceeded 20◦ or 2mm, or the probability of parsing errors
was higher than 10% (supplement section 2.4).

2) Neighbor visibility: During alignment with seven
robots, Bluebots detected approximately 2.2 out of 6 possible
neighbors on average with expected loss due to occlusion,
occasional misidentified robots, and information loss during



Fig. 7. Scalability of alignment. Convergence of headings takes longer and
settles at higher circular standard deviations σφ with an increasing number
of robots. All data points were averaged across N = 10 simulation runs.

conservative parsing (supplement section 2.1). In simulations
with seven robots, we assigned a random subset of visible
neighbors to each robot in each iteration, and compared
the effect of the subset size on alignment. In this case,
there was no parsing and no noise on the LED positions.
The convergence of robot headings was accelerated if more
than 2.2 neighbors were visible; conversely, it slowed down
and almost doubles if one single neighbor was visible
only (Figure 6B). The final circular standard deviation σφ

was unaffected by the number of visible neighbors. As
with schooling fish that exhibit group-level coordination, a
limited [25], [29] and noisy [50] count of neighbors was
sufficient to achieve alignment consensus in our experiments.

3) Cognition speed: Faster cognition – achievable with
more powerful hardware or more performant algorithms –
allows for more frequent sensing, which generally results
in more accurate state estimation and control. Bluebots’
cognition speed is most severely affected by the complexity
of image processing. Average sensing iteration frequencies of
3.42 Hz were measured during alignment only, and dropped
to 0.96 Hz when predator detection was added. Simulations
with seven robots showed that the quality of alignment
deteriorates for frequencies below 1 Hz (Figure 6C). This
prevented us from using a previously developed [31] and
bioinspired [49] flashing mechanism to warn fellow Bluebots
against the predator; while effective for predator alert (sup-
plemental movie), flash detection slowed down and damaged
alignment significantly.

4) Number of robots: We simulated alignment with 5–50
robots to assess whether our implementation scales well to
larger collectives. Perception and cognition of these simu-
lated robots matched the Bluebots. For headings, the con-
vergence time grew and the final circular standard deviation
σφ deteriorated with the number of robots (Figure 7). This
confirms our expectation that with more robots, occlusions
become more frequent and inferring individual headings
more challenging. As a result, small alignment errors add
up from one end of the collective to another.

5) Escape angle: The fountain maneuver grows with the
escape angle Θ (Figure 8); |60 ◦| was chosen for physical
experiments due to space constraints in our testing environ-
ments. In comparison, the same maneuver with Θ = |150 ◦| –

Fig. 8. Escape angles. (A) The larger the escape angle Θ, the longer are
the escape trajectories (colored). The predator moves from bottom to top
and is indicated by the vertical line on the left (greyscale). (B) A fountain
maneuver with six simulated robots and an escape angle of |150◦|.

the rear limit of the visual field of gadoid fish [42] – requires
nearly ten times as much space (compare Figures 8B and
4B). Simulated robots were able to reach and hold larger
escape angles more easily (supplement section 2.2).

VI. CONCLUSIONS AND FUTURE WORK

We designed, implemented, and demonstrated the fountain
maneuver on the Blueswarm platform. Qualitative experi-
ments with Bluebots (Figures 1B and 4-5) proved that our
algorithms are robust enough for physical demonstrations
despite limitations on perception (non-visible neighbors due
to blind spots and occlusions) and cognition (limited image
processing speed and tracking errors). Quantitative exper-
iments in simulation (Figures 6-8) revealed that fast and
reliable neighbor tracking matters critically for alignment.
However, exact headings do not seem to be required.

The fountain maneuvers demonstrated here were more dy-
namic and perceptually complex than previous 3D behaviors
with Blueswarm [31] by using the anterior LED to infer
and coordinate heading with neighbors. Our results show
that by careful integration of hardware (especially cameras
and LEDs) and software (especially image processing and
neighbor tracking), self-organized and dynamic collective be-
haviors are possible on completely autonomous, unassisted,
and miniature underwater robots.

With the current on-board compute power, we were
constrained to asking a single question from every image
(e.g., neighbor positions or flashing neighbors) to achieve
high enough perception-cognition-action cycle frequencies.
Moreover, our vision algorithms relied on a clear and dark
water environment for the detection of LED blobs. In the
future, we envision robots with enhanced compute power,
able to detect other robots in front of varied and dynamic
backgrounds. Such a collective could coordinate without
active (i.e., LED) visual markers and more easily navigate
in real-world environments like aquariums, coral reefs, or
harbors for collective patrolling, sampling, and search.
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