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Abstract— We present a locally reactive algorithm to con- enables the final shape to be built over irregular terrain.
struct arbitrary shapes with amorphous materials. The goal Without global positioning, we design a compiler that takes
is to provide methods for robust robotic construction in an arbitrary goal structure;, and generatesiarkers in the
unstructured, cluttered terrain, where deliberative approaches environment such that when robots react to this marked up
with pre-fabricated construction elements are difficult toapply.  environment they build the desired shape, Fig. 1.
Amorphous materials provide a simple way to interface with We envision these types of construction algorithms and
existing obstacles, as well as irregularly shaped previowseposi-  robots to be useful in preparing hazardous cluttered sitis w
tions. The local reactive nature of these algorithms allowsobots  loose rubble for people or other robots, either by building
to recover from disturbances, operate in dynamic environmats,  a stabilizing layer over loose material or providing sugpor
and provides a way to work with scalable robot teams. structures and roughly level surfaces for more accurate
types of construction. By exploring the tradeoff between
o locomotion and construction capabilities of a robot adains
A. Motivation the allowable approximation error and construction speed,

Robots are well-suited for tasks that put people in harm#his theoretical work can serve as a guide when designing
way or need to be performed faster and more consistentyich systems. The contribution of this paper is to provide a
that humans can. The long-term goal of this project isompiler that takes an arbitrary target structure and ggesr
to enable robots to do the type of construction that ia set of environmental markings that reproduce it to within a
particularly useful in emergency situations, where haaasd pre-specified accuracy when robots respond to the markings
poorly prepared construction environments are the norih, awith a known locally reactive behavior. In addition, the
new structures, e.g. levies, supports , or access rampd, n&ey technical contribution is a lower bound for terminating
to be built around, on top of, or in support of existingstructures of the ramp building [11] in terms ffcontinuity.
structures. The focus of this paper is designing algorithmbhis bound allows us to prove that the compiler works
that enable one or more mobile robots to reliably buildind provides additional tools for reasoning about amorphou
approximations to pre-specified structures with amorphousnstruction in general.
building materials. The target shape is assumed to be muchSection Il sets up the mathematical notation and provides
larger than the robots, so they need to navigate and move gBeded results. Procedures for building arbitrary strestu
top of partially completed structures. Amorphous materialare described in Sec. Ill, where Sec. IlI-A summarizes
allow pre-specified structures to be built on or around wreg previous work on building ramps, and Sec. Ill-C presents
larly shaped obstacles—something that is difficult to aghie our main result. Simulations and a detailed error analysis o
with deliberative approaches and pre-fabricated constmic the resulting procedure are given in Sec. IV.
elements. In contrast to related work using discrete kitic
like elements, we use a continuous problem formulation angl raated Work
exploit the additional mathematical tools that come with it

The presented approach relies on reactive robot behaviorsSince construction is generally difficult, dirty, and often
which means robots use current local information to makéangerous work there has been much interest in automating
decisions as opposed to following a fixed construction plait. This brief literature survey mostly focuses on related
or maintaining a world model to execute such a plan. Thiglgorithmic problems instead of mechanism design or low-
approach provides feedback during the construction pspcesevel control problems.
which allows us to work with amorphous materials that de- Previous work on autonomous construction often focuses
form after deposition and operate in poorly characterizetl a on the case where robots (or building blocks) have good
dynamic environments. In previous work we demonstrateglstimates of their global position and all share the same
a locally reactive algorithm to adaptively build ramps oveconsistent target shape [2][7][12][16][19] or execute -pre
arbitrary unknown terrain. Here we extend the work on rampompiled local rules to create it [3][6]. Some approaches
building by approximating arbitrary target structures as aither abstract away motion constraints [16][21], or are
series of ramps. We present two flavors of the shape buildinpveloped for physical systems that do not have compli-
algorithm: first, an algorithm where robots have globatated motion constraints that restrict acceptable intdrate
positioning, and second an algorithm where robots can onstructures [2, pp130-151][7]. Approaches based on a&ditiv
locally sense terrain. With global positioning, the undierdy manufacturing, e.g. [4] also fall into this category. This
ramp building algorithm guarantees access to buildings sitelassification based on the specification approach can be
throughout the construction process and its adaptive @atuurther broken down into how much global state information

I. INTRODUCTION
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Fig. 1. (@) Irregular unnavigable terrain (black) and a die-target structure (gray). The initial position of robdts to the left. (b) Ramp building
executed over terrain with no knowledge of target structbi@e that material is only added to move past steep featueeso make terrain navigable. (c)
Shape building with global knowledge. In addition to ramplding, robots make a deposition whenever they are within thrget shape and more than
e from the shape’s boundary. (d) Shape built by executing ramlging in an marked up environment. Robots do not know altiogi final target shape,
but respond to markers (arrow locations) compiled accgrdinAlg. 1 in Sec. llI-C to approximate the target shape.

individual robots have during runtime. Some algorithms asion-negative height functioh : Q@ — R* which describes
sume global knowledge of the construction state [2][7],levhi a structure. Robots move on structures and modify them.
others use only local observations [12][6][16][3]. Thetéat While building specific structures, thgoal structure is
approaches often exploit the local nature of their appreachdenoted byg. Given a goal structure and initial structure
to gain speedup though parallelism [12][18][21] and fault, the support of ¢ is the set of points where the goal
tolerance through reactive behaviors [6][20]. When robotstructure differs from the initial environment, and is destb
have global position estimates, the presented amorphauscby S = {z € Q | h(z) < g(x)}, which we assume is a
struction neatly falls into this line of research. Robotarsh connected subset 6. Given two structures andg, g is said
the same coordinate system and goal, but have only lodal dominate », denotedh < g, whenh(z) < g(x) Va € Q.
state information and use local rules to make depositionset Q be the space of real-valued, bounded functions on
and satisfy motion constraints. Q and @t C Q the subset of non-negative ones, i.e.
The problem of specifying a target structure in a systerthe space of structures. Function application to points and
with known growth dynamics is special case of programmedperator applications to functions are denoted Hyand []
self-assembly, in which a system of interacting componentgespectively.
is programmed/designed in such a way that the interaction Robots can deposit amorphous construction material and
dynamics result in a desired final shape. The extensive prioontrol its volume and position. The free (top) surface atea
work in this area typically assumes that individual pieces ddeposition is modeled by a parameterizhdpe function d €
not have good estimates of their global position or any dloba while the bottom conforms to the structure. As a simple,
knowledge, such as the number of interacting componeniget sufficiently general, family of shape functions we use
size of the assembly volume, assembly state, etc. Instead ttones. Given an apex-position pdis,o) € Q x RT and
global behavior is encoded by specifying purely local behasteepnesg,; ¢ R let
iors [5][9]. This general approach has been applied to a wide
variety of systems, ranging from DNA [13], micro-machined d(p,0) () = 0 — kal$ — |- @)
components [1], to robots, where local interactions cae takre deposition operatoD : Q x Of — OF models

advantage of the considerable storage and computationglractions of depositions with the environment, herepgym
power of micro-processors [14]. The idea of using feedback,yering it as construction with materials like mud, expand
on the whole self-assembling system has also been exploriﬁg foam, or sand would. Given a structutee O+ with

by a number of groups. The interactions are still !ocal, buﬁ(¢) < o, the new structure after depositiap, ) is given
external global knowledge of the assembly state is used ’

tune them [8][10][15]. The proposed markup procedure in _

Sec. III-C most closely resembles patterned self-assembly Dld(.0), h)(w) = max{(d(z), h(x)}. @

or seeded growth [17], where global knowledge is used Given an initial structuréhy € Q1 a structure is built by

to compile environmental markings that encode the target sequence of depositions characterized by their shape pa-
shape. Purely reactive (but carefully designed) robotWenha rameters(¢1,01), (¢2,02), (¢3,03),.... The height function
represents the growth dynamics. h,, aftern depositions is defined recursively by

II. THE AMORPHOUSCONSTRUCTIONMODEL hn(x) = Dld(g, 0> hn—1](x). (3)

The following notation is similar to our earlier work and After the n-th deposition, local reactive rules of each robot
included here both to achieve a self-contained presentatigirect it to move onh, and possibly make a deposition
and to concisely state the previous results [11]. Thiseesti resulting in a new structurg,, ;. For example, in the case
describes a state and deposition model for amorphous caghen robots have global knowledge, they deposit whenever
struction, a model for structures which robots can navigatéhey are inside the goal shape, i.e. are positioned in its
and a global projection operator for structures that is deed supports.
proving correctness of building strategies in the nextisect

B. Navigable Sructures and f-continuity
A. Sate and Deposition Model Building ramps requires a concise description of navigable

We model theconstruction area () as a convex, compact, structures. We use three parameters to describe robofispeci

and finite subset oR (or R?) and the domain of a bounded, motion constraints:K € R*, to model the maximum



steepness robots can drive up or down; R, to model

the largest discontinuity robots can freely move past, and (@)
r € R™, to limit the amount of discontinuity in a small area, J’"k
such as the robot length. A structure is calleligable if " n'(z)

and only if it is locally (parameter) close (parameter) to R*
K-Lipschitz, i.e.Vz,y € Q and |z — y| < r:

|h(z) — h(y)| < e+ K|z —yl. (4)

R+ Q

As Opp(?sed to [11] We recast this definition as .a Continuh‘)’fig. 2. (a) Example functions fof-continuity. The functionsk and &’
constraint where a single function, Egn. (8) which dependgscribe Lipschitz continuity with different parametei& The functions

on the three navigability parameters, is used to weigh tHeandn’ are navigability functions with different parametersande. (b)
distance between two points Different f-continuous projections of the same a sample function dfille

- . ) . gray) using usinge, k', n andn’ for specifying continuity.
A function h € @ is called f-continuous iff

Vo,y e @ [h(z) —h(y)| < f(lz—y]), () implies n-continuity:

where f : R — R* is a monotone function that is zero at Klz — o'+ |z — | .
zero and sub-additive (preserves the triangle inequaliy)
N N
f(O) =0 = KZ|$i—l‘i_1|+N€2 Z|h(l‘l)—h($z_1)|
r<y = f(z)<fly) Va,y,eRY, i=1 i=1
fl@+y) < f@)+fly) VYo,yeR" (6) > |h(zo) — h(zn)| = |h(z) — h(z)]. 9)
For example, whenk(z) = Kz then a function isf- "

Navigability is defined for structures and checked for
point pairs. Using the equivalence betweegontinuity and
V\pavigability allows a direct definition of navigability for
s?ngle points. A point: € @ in structureh is called navigable
iff P,[h](x) = h(z).

continuous with functiork (written ask-continuous) iff it
is K-Lipschitz, see Fig. 2(a) for example functions.

To reason about global guarantees of local algorithms,
define the projection operatd?; in Eqn.(7), which maps
any structure to thelosest f-continuous function that can

be built t_)y only adding material. At poimt_e_ Q, Py takes [1l. BUILDING ARBITRARY STRUCTURES
the maximum value of any needed additions so all other Thjs section describes increasingly complex examples of
points fulfill Condition (5), building structures: (1) a brief summary of previous result
on building ramps including a new lower bound; (2) a strat-
Pylh)(z) = gleag{h@ = fllz =y} @) egy for building a goal structureg, on arbitrary, potentially

unnavigable terrain, when robots can estimate their global
Theorem 1. The operatorPy : Q — Q in Eqn. (7) has position in a consistent reference frame, i.e. have GPS; and

the following properties: (3) a compilation procedure that takes global informatiod a
1) P;[h(z) is the smallestf-continuous function that produces markers which allow robots to build structures to
dominatesh. within a pre-specified errof using only local knowledge.
2) f<f = Psh] > Pplhl. As presented, all algorithms in this section require- R to
See Fig. 2(b) for examples and Sec. VI for proof. get an ordering of points iy). One simple way of applying

these algorithms t6) C R? is to fix a path and directly use

the results. Alternatively, this approach could be extere

n(z) = [ﬂ e+ Kz (8) ysing other .orderings that are aimed at achieving efficient
T implementations, for example by searching for good paths.

fulfills the conditions in Egn. (6) and-continuous functions A, Building Ramps Adaptively

are exactl.y the set of navigable ones. _ Our previous work on adaptive ramp building [11] guaran-
_ Proof: (n-continuous = navigable) For a givenn €on-  tees the construction of a final structuke, that is navigable
tinuous functionh, restricting the definition ofi-continuity everywhere between a starting poing, and a goal position

in Eqn. (5) to point pairs;, 2’ s.t. Lx_x/| <r result/s inthe ;. One or more robots can build ramps using only local
navigability condition|h(x) — h(z')| < e + Kl —2/|. _knowledge of the current terrain and the heading direction
(navigable = n-continuous) Given an arbitrary point pair toward z, .

z, ¢’ € Q, the line segment connecting them is alsodn  The ramp building algorithm maintains a navigable area
by assumption. Let, z1 ... zy be N +/1 points spaced groundy, called theaccessible region, and extends it toward
along this line withzo = =z andzy = ', where the first ;. | the goal is reached, Fig. 3(a). Specifically, a robot
N points are spaced apart and the last pair posf3|bl)_/_Iess,repeatS the following sequence of operations:

€. |oy — @y < . For each pait;y, z; by naw‘gﬁkilll"ty 1) Move toward goal until reaching it or finding a non-
|h(xi) —h(zi-1)| < e+|zi— 21| There areV = | == navigable feature, i.e. a point pait — y| < r with
such point pairs and summing the incremental differences  |h(x) — h(y)| > K|z — y| + €.

Theorem 2: The function
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Fig. 3. (a) Schematic of adaptive ramp building. Cone likpaditions are
shown in red. The accessible region reaches form the smplé@# in the
domain to the current position. When ramp building is complete (Fig. 1b)
the whole domain is navigable. (b) Schematic of robot spegéometric
limits on navigability parameters. The lengthg ,osition aNdlopot Place
limits on the maximum deposition height and

2) Deposit on the lower point of the non-navigable pai
(minimum deposition height and maximum height
given by robot geometry).

3) Backup by2r.

As depositions made in response to non-navigable features

Note that [11] assumes a continudusin order to ensure
progress—a restriction we would like to relax to allow
discontinuities at markers in the next section.

Lemma 4: Adaptive ramp building works over discontin-
uous structures with a countable number discontinuities of
the fromhg(z) + Y, a;0(x — x;), whered(0) =1, a; > 0,
andhy € Q1 is continuous.

Proof: Since they have measure zero and finite height,
this type of discontinuity does not change any of the vol-
ume computations in the progress proofs. The restriction
a; > 0 ensures that the discontinuous pointsare only
deposition locations (lower point in non-navigable pafr) i
its neighborhood (responsible for deposition volume) essu
progress [11, Sec. 3.1]. ]

B. Building With Global Positioning

With global positioning, the problem of building an arbi-
trary goal structurg(x) is easy to solve. In addition to ramp
‘building robots execute the following behavior: they make a
deposition (of a maximum height(z) + 5) whenever they
are in the support$, of g and

hal@) < glw) - 5. (11)

might themselves be non-navigable features, backing up N o
guarantees that robots maintain the accessible region tifar these depositions, they follow the same sizing and
extends fromzg. This region might temporarily shrink, e.g. backing up strategy as in adaptive ramp building. Following

when a robot encounters an obstacle while moving uphithis strategy essentially treats the interiorgadis an obstacle

and makes a deposition that creates a steep feature.

ayd the ramp building algorithm adaptively builds over it.

backtracking and repeating the procedure, new depositionsRobots might need to add additional material to ensure

are checked for navagability.
How the navigability parameter&’, ¢, and r relate to

that the structures they are moving on are navigable. Where
and how much they add is determined byr) and I(z),

a robot's geometry is illustrated in Fig. 3(b). We assum#hich are upper and lower approximations gfthat take
that they can be chosen conservatively for a given robotavigability into consideration. They are defined in terrfis o
In fact, since they influence the built structure one mighpotentially non-navigable, auxiliary functiong andg;:

choose these values to fulfill both robot motion constraints
and produce desirable results. For example, one couldecreat
a smoother structure by choosing an artificially low value
of e. The following considerations place limits on these

parameters:

Motion constraints;
Deposition paramteres
(e.g. Kz) or motion
constraints;

Sensing range.

Deposition resolution < e <
0 <K<

Robot length < r <

.I') + €T
ho(l‘)

,x €S
, otherwise

gu(w) = { al

u(r) = Pylgul(®) (12)
max(g(xz) —er, h ,t €8
gi(x) = { (g(ho)(x) 7o) ,otﬁerwise
l(x) = Prlgi](w). (13)

In terms of the navigable upper and lower bounds this

Within these ranges the parameters can be chosen freely anchtegy results in the following structure.

different combinations result in different final structsyrsee
Sec. IV.
Theorem 3: Settingzy = min(Q)+2r andz, = max(Q)

Theorem 5: When robots execute the ramp building algo-
rithm and additionally deposit on poinise .S where condi-
tion Eqn. (11) is true (with the maximum heightz) + 5),

and running the ramp building algorithm on an initial structhe resulting structure has the following properties:< u

ture hg where points up to the initial position, < z(, are
navigable results in a final structuke with upper and lower
bounds given by

Py ho] < by < Pylhol. (10)

Proof: The choice ofzy and x, imply that h. is
navigable everywhere. The upper bouRdis proved in [11,
Sec. 4.1]. Theorem 2 implies th#, [h] is navigable, and

Vz € Q andl < h, Vo € S with e = 3.

Proof: The deposition height is limited by, on navi-
gable points ofy. Since any additional depositions to ensure
navigability the are made by the ramp building algorithm,
the upper bound from Thm. 3 i8%[g,] = u. Robots will
deposit on points ir§ with 7, < g — § <1 and can make
these depositions without violating the upper bound since
the deposition height is as least Where g is navigable,

Thm. 1.1 implies it is the smallest dominating navigable.e. points that are not covered by a ramp, robots will keep

structure. Sincéyg < h., P,[ho] is @ lower bound for.,.. B

adding to the target structure until the< h,,. [ ]



Fig. 4. (a) Diagram of compilation procedure and error baurikhe original environment is shown in black, the structiarde built build, g, in gray,
and the markers:;; as black dots. The<-Lipschitz approximation of the shape is shown in solid red ¢he+e1 bounds of acceptable final structures,
u andl, as dashed red lines. The upper and lower bouRdsnd P,, induced by the markers are shown as blue lines. The congpil@iiocedure results
in markers that have a height equal to the upper bound and are spaced so the lower bounds induced by eachrnagesect at crossing points

on the—e7 bound (green dots). Markers are only placed on the supguotyrs in green, of the gray structure, i.e. points in the aagienvironment on
which the structure should be built. (b) Final structureltbini response to markers.

C. Building Without Global Positioning Algorithm 1 Compiling Markers.

Without global positioning individual robots do not know 1 ¢o = min ()
where they are with respect to the target shape. Local sgnsinz: &V =0
allows them to assess the navigability of their immediate3: While ¢; < max(S) do
surroundings. Yet, while this restriction limits the atyili 4 i =max{z €5 |u(z) — n(|lz — ) > U(c:)}

of individual robots to make building decisions, dropping ci+1 = max{c € § |u(z;) — n(|lz; — c[) > (c)}
the need of sharing in a consistent global reference framé: incrementN

also makes this approach robust to position and progres$ end while N

uncertainty. 8 m(x) = >0, u(xi) — ho(xi)d(z — ;).

Soecifying Structures: The particular strategy we pursue
here is to design a set &f discrete markings: of the form

N Theorem 6: Given an initial structuréhy and goal struc-
m(z) = Z ;0 (x — x;) (14)  ture g > ho and target erroer > ¢, the compilation proce-
i=1 dure in Alg. 1 terminates and generates a final marking
so that ramp building o + m results in the final target Such that executing adaptive ramp building/en-m results
shapeg to within a pre-specified errorr. We tackle this in afinal structuréw, with the property thalth, — Py[g]| < er
problem by designing a compilation procedure that takedn the support of andh. < outside the support.
an arbitrary initial environment,(z), goal shapeg(z), and Proof: This proof proceeds in three steps. First the
errorer to produce initial markings: on hg s.t. the system global upper bound, then the lower bound $nand finally
dynamics of ramp building have a steady staig¢r) with ~ termination.
|h«(z) — g(x)| < er on S, subject tog being navigable. The upper boundu is k-continuous. By construction
Compiling Markers: Each marker above a certain heightho + m < u« and the upper bound for the final structure
makes a structure non-navigable, so that robots will build &. of adaptive ramp building otkg + m is Py[ho + m].
ramp in response. Given the upper bounand lower bound Since P, [ho +m] is the smallesk-continuous function that
| for acceptable final structures the compilation procedure idominatesh, + m, u must be at least as large ahd < u
Alg. 1 generatesn, of the form Eqn. (14), such that ramp globally. By the definition ofu in Eqn. 1,u — Py[g] < er
building on hy 4+ m, result in a navigable structure that isand thush, — Py[g] < er on S.
bound between andw for every point in the suppoi$, and We prover the lower bound by induction and show that
bounded above by outside of the support. the marker between two crossing pointsandc;; induces
Marker placements are computed iteratively by choosinthe lower bound onh, between the two points. Since
positions such that when their heighthig(x)+m(z) = w(z) adding markers can only increase the sizehof adding
the lower bounds of the resulting ramps intersecti@r), more markers can only make the bound tighter. Assume that
Fig. 1(a). The points, where the lower bounds intersecth.(z) — Px[g](z)| < er for all z < ¢;. By Line 4 in Alg. 1,
are called crossing pointg; € S. Algorithm 1 starts the smallest-continuous function built in response to the
with crossing pointcy = min(S) and alternates between marker atz; is larger thanl at ¢; and the points between
computing the next larger marker locatieg, which in turn  ¢; and x;. By Line 5 the nextc;; is close enough that at
determines the next crossing point wherecy < xg < c¢;...  the smallest-continuous function built in response to the
marker atr; is at least as larger dst c;;1 at points between



shape cannot have any. This error can be reduced by using
robots with navigability constraints that have a large galu
of K. This error is bounded byy — Py[g]|.

The second type of error is related to marker density. Since
it is controlled by the compilation parameter, the (Lo.)
error itself is easy to quantify-er from Py[g]. Figure 5(c)
shows the number of markers needed to compile the target
structure in Fig 4(a) as function ofr where all other
parameters are constant. Since the navigability funetibas
a discontinuity, choosing the smallest for a given number
o of markers makes sense. For some values the error can be
decreased essentially for free (no additional markersjs Th
type of error (1) is bounded byer|S|, i.e. target epsilon
times the size of the support. From the proof of Thm. 6,
4 an upper bound for the number of markers is given by the
minimum speparation between markers and the diameter of
L | S, i.e. for a given target error and parameter combination the

e number of needed markers is bound Ky%. And the
(b) r (© < procedure produces an excessive amount of markers when
er approaches the lower theoretical lingit see Fig. 5(c).
Fig. f’ __ Adaptive Ramp BuilAdlilng- (at)_t,SChema“C "ngj tetst gemfﬁr The third type of error depends on the navigability param-
eamelty toprosenie buing  ramp over & marker tratse fines a6 high  €t€rSK , 7, ande. We use the reference geometry in Fig. 5(a)
as the robot is long. (b) Error volume of the sample strucasra function of  t0 evaluate the tradeoff of different parameter combimestio
varyingr, a}nde f}md a2constanK < 0.5. Since ?:1' vauz?;iste?{gtlgﬂ;mnaiﬁﬁ The reproduction fidelity should (and does) depend on how
trgt;ngt’ Syv2a, L(l;i}thoeqrn by p@g;’ggﬁ; i?]érr]gegiie:?gm?he fogot size or adjmfpghe ?,’nUCh information each robo.t has, i.e. how local the algmlt.h.
sensing range. The error is given in unitss@. (c) Number of markers IS, and how much uncertainty each amorphous deposition
prrg?]u?ﬁd byaﬁtljg-kéeom th;é“tg{rg:: ngacr::g?erlg tﬁg-sgﬁé aihgit{ﬁge?fs ho has. On one hand, if the construction material is very sloppy
fhat agsiggrows onlypa sgmall numbepr of markers are needed, and the sal d does_ not a”OV_V fo,r accgrate depositions l(latgdhe.
number of markers can produce several different levels ofiracy. For ~construction material limits fidelity, and more informatio
example,er = 2.3¢ ander = 1.9¢ both require 4 markers. does not help. On the other hand, if the view of the world is
too local, i.e. robots cannot see much of their environment
(smallr), uncertainties propagate and limit fidelity, and more
x; andc¢;41, thus by inductiom.,. — Pi[g] > er. accurate depositions do not help, Fig. 5(b).

Since the magnitude of the derivative loAnd v are both The error sources can be controlled in different ways
bounded byK, the minimum separation betweepandz; and this section gives guidance on how to trade off design
is at IeastEng. Thus each pass through the loop ensurggarameters, for example, whether to design a robot that
progress. Termination requires thatis at leasts, otherwise is better at driving over rough terrain or to focus on a
¢; = x; = ¢;41 and iterations through the loop (Line 3—6)mechanism that can make more accurate depositions.
do not result in progress. ]

. . . V. CONCLUSION

Once the compiler has used global information to com- ] i ) ]
pute marker heights and locations, adaptive ramp building We present algorithms for robotic construction with amor-
can build the structure by locally responding to them, seghous building materials that allow one or more robots

O
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=
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a
3
=
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>

Fig. 4(b). to build approximations to arbitrary shapes and provide
an error analysis for the various sources of approximation
IV. SIMULATION EXPERIMENTS AND PARAMETER error. Amorphous building materials allow robots to build
SENSITIVITY ANALYSIS structures over unknown irregular terrain, and these nastho

. . e . are designed to enable robotic construction in disastersare
This section focuses on q_uantlfylng different error type%\/here such environments are the norm. The presented ap-
e e . 1 goach Ulizesprevius wor on adapive amp buldng o3
error in the final structure 8'base beha\{lor to provide access to building sites during
) ) o ~ the construction process. Complicated structures can be
1) If the goal shapey is not K-Lipschitz it is approxi- approximated by a series of ramps. By using single markers
mated_byPk[g]. _ to encode ramps, we provide a compilation procedure that
2) The difference betweefPy[ho + m] — Py[g]| which  can efficiently encode approximations to arbitrary target
result from approximating the shape by a finite numbegtryctures with a relatively small number of markers. This

of markers. o approach allows robots without global positioning to build
3) The uncertainty in the exact shape/of of when the  structures by locally reacting to markers.

ramp building algorithm stops, i.e. the bounfs/h, + In addition to creating a physical implementation, we

m] < hy < Pglho +m]. plan to extend this work by looking for more physically

The first type is due to a robot's motion constraints. Ifealistic markers. One option is to mark up environment by
robots cannot move over steep features, then the the firdloosing locations according Alg.1 and encoding the désire



height in some other way, for example, the marker colgro] Seung-kook Yun and D. Rus. Adaptation to robot failuaesl shape

or a tag embedded the building material which robots can
read and modify. The next theoretical step that would make
both the presented work and the underlying ramp building1]
algorithm easier to implement, would be to get a better

characterization of allowable deposition shape functiahs
Rather than designing the amorphous deposition mechanism Robotics, pages 607—623. Springer Berlin Heidelberg, 2011.

around a mathematical abstraction that works, it would be

change in decentralized construction. Rebotics and Automation
(ICRA), 2010 IEEE International Conference on, pages 2451-2458,
2010.

Seung-kook Yun, Mac Schwager, and Daniela Rus. Coatitig
construction of truss structures using distributed equa$s partition-
ing. In Cdric Pradalier, Roland Siegwart, and Gerhard IHager,
editors,Robotics Research, volume 70 ofSpringer Tracts in Advanced

V1. PROOFS

much better to develop a theory that is flexible and can

accommodate shape functions that are easy to implement.
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To prove f-continuity, assume to the contrary that
P¢[h](x) is not f-continuous. Thend z,2’ € @Q s.t.
|Pr[h](z) — Prlh](2)] > f(Jx — 2'|). Without loss of
generality, assume thdt;[h](z') < Py[h](x). Dropping the
absolute value and rearranging terms gives:

Pe[h)(x) = f(lz —2']) > Py[h](a")
or
?eaé‘{h(y) — flz—yl} = f(lz —2])
g}gg{h(y') — f(la" =y}

Choosing, the possibly sub-optimal valug, = y for the
smaller term yields

h(y) = f(lz —yl) = f(lz = 2']) > h(y) — f(j2" = y]).

Sub-additivity and monotonicity of lead to the following
contradiction

F(a" = yl) > f(jz —yl) + f(jz = 2'))
> fllz—yl+le—2) = f(l2" = yl).

Thus, P¢[h](z) is f-continuous.

To show thatPs [h] dominates:, note that in the definition
in Egn. 7 the maximization is over all elements @, since
z € @ and f(0) = 0, the value of the new functioRy[h](z)
at z is at least as large dgx).

Finally, to show P;[h] is the smallest dominating -
continuous function, ley,» € QT be two functions where
g > h andg is f-continuous. Assume to the contrary that
Jz € Q s.t. Prlh](x) > g(x). By the definition of Py[h]
A’ € Q st

> (15)

h(a') = f(la" = 2[) > g(x).

Sinceg > h,

g(x) <h(a') = f(ja" = z]) < g(a’) = f(]2" — z])
leads to a contradiction about thfecontinuity of g

fl2" = 2[) < g(@') — g(z) < |g(2") — g(2)].

Thus Py[h] is the smallestf-continuous function that dom-
inatesh.
[
Proof: 2 (Preserved order of): Given two functions
f,f’ € Rt — RT that fulfill condition (6) wheref < f’
and an arbitrary structure € Q%, then Py [h] < Py[h].
The proof follows directly from the definition Eqn. (7), sic
every point inPy. [h] is smaller (subtracts more) thdfy [A].
[



