

Master Thesis
Microengineering

Towards Self-Assembled Structures

with Mobile Climbing Robots

Lucian Cucu

Prof. Radhika Nagpal

Prof. Dario Floreano

Harvard University, August 2014

Contents

1 Introduction 5
1.1 Background and Motivation . 5
1.2 Litterature Review . 6

1.2.1 Modular or Self-reconfiguring Robots . 6
1.2.2 Obstacle climbing robots . 7
1.2.3 Pure vertical climbing robots . 8
1.2.4 Adhesion and attachment mechanisms . 8

1.3 Goals . 11

2 Mechanical Solutions for Climbing 12
2.1 Preliminary Reduction of Design Options . 12
2.2 Further Reduction of the Design Options . 14

3 Robot Model and Geometrical Optimization 16
3.1 Simple Robot Model . 16

3.1.1 Case I - Climbing On One Robot . 17
3.1.2 Case II - climbing on a structure . 21

3.2 Flipper Robot Model . 22

4 Mechanical Design 25
4.1 Tracks . 25
4.2 Worm drive . 25
4.3 Motors . 27

4.3.1 Wheels . 27
4.3.2 Worm Gear . 28

4.4 Chassis . 29
4.5 Worm Drive Support . 30
4.6 Wheels . 30
4.7 Deck . 30

5 Embodiment and Climbing Assessment 32
5.1 Climbing Assessment . 34

5.1.1 Phase I . 34

2

5.1.2 Phase II & III . 36

6 Towards Full Autonomy 39
6.1 Choosing a Structure . 39
6.2 Building a 2D Tower . 40

6.2.1 Challenges . 40
6.2.2 Solutions & Sensors . 40
6.2.3 Electronics - Overview . 41
6.2.4 Solving the Alignment Problem . 42

6.3 Construction Algorithm . 44
6.3.1 Implementation . 45
6.3.2 Code . 50

7 Autonomy Assessment & Discussion 52
7.1 Discussion . 53

8 Conclusion & Future Work 55
8.1 Future Work . 55
8.2 Acknowledgements . 56

A Code Details 61

List of Figures 86

List of Tables 90

3

4

Chapter 1

Introduction

1.1 Background and Motivation

Social insects like ants and termites fascinate by their capabilities of constructing massive and complex
structures in a decentralized way. These structures are much bigger than the size of one individual (ter-
mites mounds easily reach up to 2m high) and are achieved without global coordination. The insects use
pheromones and the environment (stigmergy) to communicate locally with each other.

Outside the mound however, structures (and infrastructures) are needed to cope rapidly with new
obstacles and situations. Social insects deal with these in an original and pragmatic manner by using
their own bodies as immediately-available building blocks.

In the case of an unexpected water flood, fire ants will link together to form a raft. The strength of the
linkages between ants and the moderately hydrophobic layer present on their exoskeletons make the raft
hold together and float [1]. Japanese honey bees use their bodies to cluster around individual predators
(e.g. hornets) thus rising the temperature until the predator is “cooked”. The lethal temperature for bees
is around 48-50 ¶C, whereas for the hornet it is at 44-46 ¶C [2].

�D� �E�

�G� �H�

�F��F�

Figure 1.1: (a)weaver ant tower [3]; (b) fire ant raft (pushed into the water with a twig) [1] ; (c) army ant bridge[2];
(d) weaver ant chain [3]; (e) Japanese honey bee oven around a hornet [2]

5

6 CHAPTER 1. INTRODUCTION

When in di�cult situations, army ants can build bridges, ladders, walls and chains. These structures
are meant to provide significant logistical advantage when defending, foraging, or emigrating. Towers
have been also witnessed when higher objectives had to be reached.

These behaviors provide social insects with a remarkable versatility and adaptivity. In robotics, such
behaviour would also be desired in situations where the objective exceeds the physical or computational
power of only one individual. Self-assembly through stigmergy could allow a team of robots with limited
capabilities to accomplish di�cult tasks , with minimal (or no) communication, and without any super-
visory control.
Overcoming unpredicted obstacles and sudden changes in the environment represents a major challenge in
robotics. Solving such issues would have a significant impact in fields such as exploration or rescue. One
solution might be the ad-hoc construction of a support structure by other fellow robots, in order to allow
others to proceed further. In places where materials are not available, the body of the robot itself would be
the only accessible controlled element in the environment. Hence, it could serve as a reliable building block.

However in order to self-assembly and to build any kind of support structure, the robots have to have
specific mechanical features, allowing them to climb on each other, without getting stuck. This research
will focus on building robots capable of climbing and self-assembling.

1.2 Litterature Review

The concept of “climbing” robots is broad one. “Climbing robots” can be capable of moving on vertical
surfaces, of transiting from horizontal to vertical ones, or of overcoming obstacles of various shapes and
sizes. In the same category can also be included modular, self-reconfigurable robots, which although not
capable of climbing individually, are capable of doing it when in more complex formations.

This research is at the crossroad between self-reconfigurable robots and mobile climbing robots. At-
tachment and adhesion systems play a crucial role for both climbing and driving capabilities, and will
be separately investigated. A brief, non-exhaustive overview of these di�erent types is presented in the
following section.

1.2.1 Modular or Self-reconfiguring Robots

Some researches have already tackled the problem of climbing from a particular perspective, where em-
phasis is put less on individual complexity, and more on the possibility of assembling into more complex
and versatile structures. Thus, although with very reduced mobility and technically no climbing possibil-
ity for an individual module, an assembled system could reach configurations that deal with both issues.
A thorough survey of previous systems can be found in [4].

Self-reconfiguring mobile robots can be either lattice-like or chain-like. Pure lattice architecture is
present in works like [5] [6], [7] or[8] to cite only the most recent ones. In the first two ones, the modules
rely on an exterior movement in order to reach the desired configuration, the only degree of freedom
(DoF) consisting of attaching or detaching. In the last example, the robots are provided with a particular
kind of degree of freedom through a momentum wheel. By suddenly braking the wheel the cubes are able

1.2. LITTERATURE REVIEW 7

to move on the floor and jump from one lattice position to another. In [9] the robots can slide on top of
each other thanks to a rail system. The movement is of course limited to a plane and the modules have
to be correctly docked to each other.

Figure 1.2: modular robots (from left to right) : (a) lattice-like robot MICHE [5], (b) M Blocks [8] ,(c) two SMORES
modules [10], (d) a complex assembly of SuperBot modules [11]

As we focus our interest on systems that present some kind of controlled individual mobility in more
than 1DoF, the SMORES system ([10], figure 1.2 (c)) is particularly interesting. It is inspired by the
SuperBot [11] and the CKbot [12], which can reassemble after destruction, yet it brings the classical
modular robot design to a more mobile level, by combing di�erential drive with a docking mechanism.
Additional degrees of Freedom for panning and tilting, as well as a symmetric design and an underactuated
docking mechanism make it an interesting forward step in the field.

1.2.2 Obstacle climbing robots

On the other extreme, some robots achieve remarkably robust obstacle climbing without compromising
their mobility. The Shrimp uses parallel articulations and rocker-boogies in order to passively overcome
obstacles up to twice its wheel size [13].

Other robots are designed for more controlled obstacle climbing such as stairs. [14] uses tanks treads
and a third intermediate wheel which helps the robot change its center of mass. The wheel is also in
the same plane with the tracks and can be moved with the help of a lever, thus providing some kind of
reconfigurability to the robot. In order to keep the third wheel under one track, a spring-loaded prismatic
joint is used.

Figure 1.3: climbing robots for rough terrain (from left to right): (a) SHRIMP, (b) reconfigurable tank-tread robot,
(c) LaMalice, (d) Mobit

An interesting compromise between modularity and climbing capabilities has been proposed in [15],
where 1DoF tank-treaded modules can use friction to change configuration. A similar concept is presented

8 CHAPTER 1. INTRODUCTION

in [16] and [17] where tracked modules hook together to be able to steer and overcome obstacles.

Sometimes more complex mechanics are used in tank-treaded robots to be able to change locomo-
tion mode. In [18] the system uses a pivot to change drive configuration from track-only to wheels and
tracks. Consequently, it is able to tackle various obstacles, reaching heights up to twice its wheel diameter.

LaMalice presents a design combining whegs and a flexible spine in a light-weight (30g), energy-e�cient
(50mW) and compact form (11cm long, 6 cm wide, 4 cm high), while being able to overcome obstacles
of its own height [19]. As the spine bends, it allows for a better gripping and a “push-pull” e�ect is
achieved, which facilitates climbing. As the whegs are flexible, a movement of the center of mass occurs,
which increases the smoothness and decreases the power consumption when surmounting an obstacle .
The robot is also designed such that it can be coupled to other modules.

MOBIT is an interesting example where legs, tracks and wheels are combined to achieve maximum
versatility and mobility [20]. It uses 4 wheels adjacent to 4 tracks, each one with an actuated flipper,
allowing a wide span of di�erent locomotion possibilities.

1.2.3 Pure vertical climbing robots

Figure 1.4: ICM wind turbine inspection robot using vac-
uum to climb on brick, metal, or concrete [21]

Once fixed on the respective surface, these robots
will be able to travel on the entire surface, in or-
der to perform maintenance tasks such as clean-
ing, gritting or surface inspection. The most used
adhesion mechanisms include active suction cups
[22], [23] using dry or wet[24] adhesion, and per-
manent magnets [25]. The reliability of such sys-
tems has been proven, allowing the entrance on the
market of such systems. Patented industrial de-
signs as the one from International Climbing Ma-
chines (ICM) achieve impressive weight/payload
ratios and tackle a wide range of surfaces and ob-
stacles [21].

However these adhesion systems require con-
siderable energy and space, severely limiting their
miniaturization perspectives and autonomy. Moreover, for most systems the types of usable surfaces is also
limited and obstacles (small edges, contours protrusions) present serious, often insurmountable challenges.

1.2.4 Adhesion and attachment mechanisms

Climbing cannot be achieved without a reliable adhesion system. A detailed review is now given of di�er-
ent adhesion and attachment mechanisms. The goal is to gain insight in some of the existing solutions,
in order to eventually take inspiration when designing the climbing robot.

1.2. LITTERATURE REVIEW 9

Pneumatic adhesion using active suction cups has the advantage of coping with various kinds of
surfaces while achieving adhesion control through pressure measurement. Problems however occur on
porous or dirty surfaces, and the vacuum pumps are bulky and energy voracious. Some promising results
have been achieved using the Bernoulli e�ect, where the force/weight ratio outruns nearly all other known
methods [26]. Using a flow of 51 l/min at 5 bars through a 6mm nozzle, an attraction force up to 12N is
achieved on a 230g robot. However, constant flow and distance to the (flat) surface have to be maintained.

Magnetic adhesion has been implemented in robotic systems with permanent magnets [25], switch-
able magnets [5], or electropermanent magnets [6]. Switchable magnets have been used in reconfigurable
robotic systems. The one implemented in Miche[5] uses 2 permanent magnets with a switch connecting
them, capable of mechanically toggling the magnetic field. The Robot Pebble system uses an elctrop-
ermanent magnetic system, composed of both a magnetically hard (eg. Nd-Fe-B) and a semi-hard (eg.
Alnice) material [6]. The semi-hard magnetic material can be polarized with a help of a coil, thus creating
a magnetic field that either reinforces or cancels the strength of the neighboring permanent magnet.

Permanent magnets have been used either on the body [27], wheels [25], or tracks of robots [28].
In modular robotics, permanent magnets are often used for alignment [12]. Despite the high force

density available and the energy-e�ciency of such systems, detachment remains an issue, specially when
considered from the perspective of self-assembling robotic systems.

Mechanical gripping with robotic hands has been widely explored on specific structures such as
pipes [29], trusses or poles [30],[31],[32],[33] or even trees [34]. These systems are often composed of
complex mechanics and work only on regular and controlled surfaces.

Figure 1.5: electroadhesive pads
implemented on a 1DoF robot

Furthermore, e�orts have been done to extend the use of grip-
per robots to a wider choice of terrain. In [35] a bipedal
robot with two grippers as legs uses the same kinematics for
climbing and walking. The grippers can grasp or roll, and
are used as claws or whegs respectively, depending on the
roughness of the terrain. The control of such a device re-
mains complex and in this case it is done through remote
control.[34].

A gripper together with a telescopic systems and cables can make a
robot like the Treebot climb on a wide variety of trees (e.g. bamboos) ,
with di�erent diameters while capable of steering and carrying a payload
up to three time its own weight

Electroadhesion has been used to keep a 220g on the wall while
traveling in one direction [36]. Electroadhesion has the advantage of
generating high clamping forces (0.2-1.4 N/cm2 depending on the substrate) while requiring relatively
low power in the order of 20 µW/N of held weight). It is also robust to dust and works both on rough
and smooth, as well as conducting and insulating surfaces. However, it requires compliant electronics and

10 CHAPTER 1. INTRODUCTION

well-designed mechanics to guarantee close contact of the electrodes to the surface. Here, a belt lays the
electroadhesive parts in front of the robot as it advances.

Figure 1.6: robot with passive suc-
tion cups

Passive suction cups have proven to work if the mechani-
cal design is suitable. In [37] a 300g robot uses passive suc-
tion cups attached on a tread for adhesion and 1DOF locomo-
tion 1.6. As the tracks moves, the next suction cup is laid,
while the one at the end of the robot is peeled o�. A string
interconnects the cups, maintaining a the cups in a defined po-
sition and while in the same time enhancing detachment (peeling
o�).

Di�erent types of Bio-inspired adhesion systems have also been
successfully implemented. These types are either mechanical (thin
claws) or are based on physicochemical principles (van der Waals forces). In [38] a spider-like robot
uses 6 10-toed legs to climb concrete, brick and masonry walls. Each toe is equipped with 200 µm thick
shafts (25 µm at the tip), and designed in a very compliant way to guarantee adhesion to the wall’s
asperities. Using similar principle, a more advanced version called RiSe, has been built [39].

In [40] 380-µm thick lamellae are etched out of DPS, and installed on the paws of a gecko-like robot.
Their specific orientation and size make that van der Waals forces alone su�ce to hold the whole 370 g
robot body at vertical on smooth surfaces (e.g. glass). The method is however vulnerable to dust and
dirt and requires regular cleaning.

�E� �F� �G��D�

Figure 1.7: di�erent ways of gripping and attaching : (a) bipedal robot with 2 grippers [35], (b) RiSe robot [39], (c)
Treebot [34] , (e) GeckoBot [40]

1.3. GOALS 11

1.3 Goals

Although a considerable number of researches have focused on collective robotic behaviour, and climbing
robots independently, none has been conducted thus far around collective behaviors implying mobile
robots individually climbing on each other.

Motivated by insect behaviour, we explore the possibility of self-assembly and structure formation
with robot bodies as building blocks.

In order for this kind of system to be scalable and to output relevant results, it is crucial that by a
thorough optimization e�ort the number of robots required to achieve a structure of a given characteristic
is kept to a strict minimum. The structures that will be considered will be towers or ramps, so the relevant
metric here will be height.

Hence, the main goals of this project can be enumerated as follows:

1. design, build and assess a robot that is capable of robustly climbing on other identical ones

2. optimize its design such that it minimizes the number of robots required for a given height

3. demonstrate a fully autonomous structure formation

4. consider scalability for all design choices

5. reduce as much as possible the dependency on the environment and avoid docking systems

In the first objective, the term robust implies that climbing should not only be reliable and repeatable,
but that is has also to be so from any given (horizontal) position.

Scalability has to be constantly considered, as it represents the core and essence of the collective
robotics. By scalability it is implied that all possibles issues that can occur when scaling up the system
have to be considered, as much from the mechanical, as from the electrical, sensing and algorithmic
perspectives. From a hardware point of view, simple but robust mechanics are targeted, and from a
software perspective, algorithms should easily scale up, and be independent of the desired shape size or
the number of robots involved, while in the same time tolerant to individual failures.

Finally, the robot should be designed in such a way that self-assembly and structure building can occur
in di�erent environments. Ideally, obstacles should be integrated in the structure, thus being more of a
support than a hindrance . Because of their mechanical designs , little margin for error or imprecision
is allowed in modular robotics. The environment has to be controlled, and random obstacles are a
serious challenge. Therefore, in order to distance ourselves from modular robotics, docking and locking
mechanisms will be avoided.

Chapter 2

Mechanical Solutions for Climbing

2.1 Preliminary Reduction of Design Options

As the literature review points it out, many di�erent climbing methods exist. It is now essential to look
into some of them and qualitatively assess which ones would fulfill the criteria required to climb on other
identical looking fellow robots.

Before doing so however, the research has to be narrowed down and only the most relevant cases will
be discussed. Figure 2.1 shows which solutions are a priori excluded and gives an insight on the di�erent
climbing mechanics available.

Figure 2.1: overview of some of the climbing categories (rectangle) and some of the common-used mechanics for
climbing (circles); the chosen path is highlighted in orange; literature references are added between brackets

Referring to the number bullets on the right side of 2.1, the following steps are justified as follows.

12

2.1. PRELIMINARY REDUCTION OF DESIGN OPTIONS 13

Step 1. It is to be decided if the robot will be able to climb obstacles on its own or only with help
of others, as in the example of [15] or [16], or as in the case of modular robots ([12], [10]).

Because one of the goals is to minimize the number of robots implied in any task, it is decided that
robots should be able to climb individually, with no kind of prior collaboration. As mentioned in the
goals, modular robots are avoided by default.

Step 2 On this level it is decided what kind of climbing the robot should perform. Robots like [30]
and [34] can individually climb on trusses and trees respectively and are capable of both vertical and
horizontal locomotion if the structure is adequate. As the goal of this project is to create a structure out
of robot bodies, and with minimum docking, it is most likely that the end structure will be relatively
unpredictable and present irregularities, making these kind of climbing systems inappropriate.

The robots which deal with 3D obstacles matching their own height size interest us the most.

Step 3 On this level, designs for rough terrain locomotion are studied. A mechanical system as the
one used in the Shrimp robot [13] could be appealing by its versatility and compliance. By its intrinsic
mechanical design, no planning or sensing is needed before tackling an obstacle. Nevertheless, the me-
chanics are rather complex, which make it di�cult to scale to a larger number, and it is expected that
because of its legs, the robot would perform poorly if it had to climb an identical fellow.

Another idea would be to use a retractable mechanism. The robot would deploy a small platform (or
leg) and push itself on the obstacle. The leg would be retracted afterwards. Although some sensing would
be required, climbing on high obstacles would be straightforward and a multitude of this kind of robots
would easily pile up without getting stuck or entangled. Yet space and actuation consideration have to
be carefully thought over. No such examples have been found in literature.

0RGHO LQWHU��
FRPSDWLELOLW\

FOLPELQJ PHFKDQLFDO�
FRPSOH[LW\

VHQVLQJ�DQG�
SODQQLQJ

DVSHFW�UDWLR�

� � � � �

� � � � �

� � � � �

� � � � �

Figure 2.2: first selection among mechanical designs; the marks are given from 0 to 5, where 5 solves the topic in
the most satisfying way; the chosen design is highlighted in red

14 CHAPTER 2. MECHANICAL SOLUTIONS FOR CLIMBING

Using a flexible spine, as implemented in LaMalice [19] would have the advantage of being mechani-
cally considerably easier to implement, but the robots would have problems piling up, as not enough flat
surface would be available for stable support. Moreover, the robot would have to be long, which goes
against the goal of minimizing the aspect ratio.

Finally, flippers have the advantage of being mechanically relatively simple to implement, and the
robot can be designed such that a good aspect ratio is ensured and enough surface is available for stably
supporting the others on top. The robots would be easily compatible in greater number, as the flipper
would stay retracted, reducing the risks of entanglement. Independent from the flipper, a variety of wheels
can be used (whegs, tracks (magnetic or not), normal wheels). Additionally, flippers could help the robot
return to the normal position, which is crucial in an environment where falling and overturning will occur
often.

The chart from 2.2 resumes all these considerations. Given the above-mentioned advantages, a robot
with flippers is selected.

Step 4 An appropriate locomotion system is now discussed.
Half circle whegs result in impressive results when in a large number and individually controlled, as

is the case in the Rhex robot [41]. Whegs have already been used in a smaller number and synchronously
actuated ([42]), yet gripping and alignment constitute serious issues to climbing. In the current work,
whegs have to be discarded mostly because of their non-convex form, which would make e�cient robot
piling di�cult.

If ferromagnetic surfaces are available, tracks with magnets would provide with remarkable climbing
and horizontal to vertical transitions [28]. However, in the context of one robot climbing on another, the
nature of magnets (strength of the field proportional to 1

d

2 make such a solution di�cult to engineer. The
system should attach enough to climb but should also detach easily enough when a robot would want to
get o� a neighbour. This is even more complicated when dealing with multiple robots in uncontrolled
positions and orientations.

It is decided to opt for a design implementing simple rubber tracks. These can be easily found on
the market, are low-cost, and require only a straightforward mechanical design. Furthermore, identical
tracks can be mounted on the flippers without significant mechanical redesign, thus further enhancing
climbing

2.2 Further Reduction of the Design Options

Several flipper-based robot designs are now explored into more detail. The key aspects to consider are
the following:

• climbing capability

• getting stuck - specially on corners and edges

2.2. FURTHER REDUCTION OF THE DESIGN OPTIONS 15

• mechanical complexity

• sensors integration - how many sensors, and how much planning is required

Figure 2.3 roughly illustrates the considered possibilities.
(a) is the basic tank-treaded robot. Practical manipulation shows that it gets often stuck on the

corners and edges of the other robot, with the tracks losing contact to the ground

To remedy this, solutions (b) and (c) are considered. In (b) the tracks are widened such as to cover
all of the robot surface. While dealing of the problem of getting stuck, integrating sensors becomes a
serious challenge. In (c) a third track is integrated, shorter than the other ones and not touching the
ground when the robot is laid horizontally on flat surface. This track would be useful to help the robot
tackle with corner and edge problems.

(d) implements simple flippers, but tracked flippers like in (e) can be mounted with little increase in
mechanical complexity and o�er the advantage enhanced climbing.

(f) requires more actuators, and the increase in design complexity is not really worth the increase in
climbing capability, as 1 of the additional track pairs has a strict length constraint (otherwise it would
not fold back). When the aspect ratio becomes high (shorter robot, taller wheels), the additional length
provided by this intermediate pair of tracks becomes almost insignificant.

�D� �E� �F�

�G� �I��H�

Figure 2.3: flipper-based design possibilities; the chosen solution is highlighted in red

In the next chapter a model is proposed for the robot and a theoretical analysis is conducted in order
to assess the importance of adding an extra feature (flippers) to a normal tank-treaded robot.

Chapter 3

Robot Model and Geometrical
Optimization

As one of the goals of this work is to minimize the number of robots necessary to achieve a structure of a
given height, the size and aspect ratio will play an essential role. Hence, a preliminary theoretical analysis
and modeling is required in order to choose the optimal solution. A model of the robot would also provide
with a metric and a reference for subsequent assessments and comparisons with other designs.

The model developed below is inspired from [16] and is meant to analyse the climbing capabilities of
a simplified tracked robot based on its aspect ratio.

The final goal is to maximize the aspect ratio by defining the possible design space and finding
its optimum. Intuitively, the position of the CoM and the available friction will both help determine the
choice of the aspect ratio. The following developments will show how the position of the CoM dictates
the geometrical limit of the aspect ratio, and how friction evolves for di�erent ratios.

Once the analysis is over, the embodiment of the robot will be done such as to be as close as possible
to the optimal size (aspect ratio, position of CoM) and with the adequate materials (to ensure friction).

3.1 Simple Robot Model

The 2D model in figure 3.1 is considered. The body of the robot does not exceed the diameter of the
wheels and symmetry on both sagittal and horizontal plane is assumed. On the frontal plane, only the
displacement of the center of mass prevents symmetry.

Let l be the length between the front and rear wheel, r the radius of the wheel, ◊ the angle of the
robot with respect to the ground, d the o�set between the geometrical center of the robot and its center
of mass (CoM), and µ the friction coe�cient. F1 and F2 are the normal support forces
It is assumed that no motor torque is used for bending the tread, and that the rolling coe�cient of friction
is negligible. The obstacle is considered to be a vertical wall of height H , with the same friction coe�cient
µ as the ground.

The following additional assumptions are made: (A1) the robot disposes of unlimited torque; (A2)
climbing can be decomposed in a set of infinitesimal static steps, where no acceleration or angular mo-

16

3.1. SIMPLE ROBOT MODEL 17

G
O��

O��

U

+
ș

(a) CoM position at tipover

G

+

O��

O��

PJ

ȝ)�

ȝ)�

)�

)�

ș

(b) main forces acting on the robot

Figure 3.1: simplified robot model; two conditions have to be respected in order to climb: the CoM has to reach the
edge of the obstacle and the robot has to be in static equilibrium at all time

mentum occurs; (A3)in each infinitesimal step only static friction occurs

Therefore, in order for climbing to be successful, the following conditions have to be fulfilled:

1. tipover : the CoM of the robot has to go past the corner of the obstacle (figure 3.1a)

2. equilibrium: for every infinitesimal angle ◊
i

static equilibrium has to be met (figure 3.1b)

A consequence of the first condition is that the position of CoM (d) will dictate the geometrical limit
of the aspect ratio. It represents the necessary condition for climbing. It results from the second condition
that the aspect ratio will also be limited by the friction µ . In the following chapters, a thorough mathe-
matical analysis of both of these aspects is done, and an optimal aspect ratio curve is derived, which will
guide the design of the robot. The final result will yield the minimum friction needed for a robot with a
given position of the CoM to climb an obstacle of its own height.

Two cases have to be di�erentiated: in the first one, the robot has only to climb on one identical
robot, and in the second case, it has to climb on a structure that contains several identical robots. In
both cases, the analysis is entirely in 2D.

3.1.1 Case I - Climbing On One Robot

In a first phase, the geometrical limit to the aspect ratio relative to the position of the CoM is derived.
From the tipover condition and figure 3.1a the height can be expressed as:

H = r + (l/2 + d) · sin(◊) ≠ r

cos(◊) (3.1)

18 CHAPTER 3. ROBOT MODEL AND GEOMETRICAL OPTIMIZATION

In order to solve the problem mathematically, the following constraints are used:

H Ø 0 (3.2)

L Ø 2 · r (3.3)

|d| Æ L

2 (3.4)

where H is the height of the obstacle, l the length of the robot, r the radius of the wheel and thus
half of its height, d the o�set to the center of mass with respect to the center of the robot, as shown in
figure 3.1b
Condition (3.3) implies that minimum length of the robot is given by the diameter of its wheels, and
condition (3.4) implies that the CoM cannot be farther than the axis of the wheels.

Equation (3.1) yields, for an obstacle of the same size as the robot, where H = 2r :

sin(◊) · cos(◊)
cos(◊) + 1 = r

l/2 + d
= r

l/2(1 + p) (3.5)

where d = l/2 · p, with p the position of CoM in percentage of the half-length
With the aspect ratio defined as k = r

l/2 = robot height

robot length

, this can be rewritten as:

k = sin(◊) · cos(◊)
cos(◊) + 1 · (1 + p) (3.6)

Figure 3.2a illustrates equation (3.6) for a fixed position of the CoM. The maximum of this function
(◊

lim

) is in the same time its limit, as the function does not have any physical sense past it. Past this
angle, the robot is physically not capable of climbing anymore (i.e. to bring its center of mass over the
obstacle). In other words, for this given position of the CoM, a even higher aspect ratio would imply
reaching an even higher angle ◊, which is not possible.

By replacing ◊
lim

in (3.6), the aspect ratio limit k
lim

relative to p can be derived :

k
lim

= sin(◊
lim

) · cos(◊
lim

)
cos(◊

lim

) + 1 · (1 + p) (3.7)

The relationship between k
lim

and p thus a linear one. Figure 3.2b illustrates this.
In a second phase, the needed friction to climb relative to the aspect ratio is derived.

For the equilibrium condition to be met, a su�cient amount of friction has to be present. By summing
the forces and torques represented in 3.1b to zero, µ can be derived :

µF2 + F1 = mg (3.8)

µF1 = F2 (3.9)

3.1. SIMPLE ROBOT MODEL 19

(a) relationship between angle and aspect ratio for a
given position of the CoM (here d = 0); the function
has a physical sense only until ◊lim

SRVVLEOH�
FOLPELQJ�

(b) the limit of the aspect ratio relative to the
position of the CoM; beyond the blueline, the
necessary tipover condition is no longer respected

Figure 3.2

µF1 ·
33

L

2 + d
4

sin(◊) + r)
4

≠ F1 · cos(◊)
3

L

2 + d
4

+ (3.10)

F2 ·
3

L

2 ≠ d
4

sin(◊) + µF2 ·
33

L

2 ≠ d
4

cos(◊) + r
4

= 0 (3.11)

From combining (3.8) and (3.9):

F1 = mg

1 + µ2 (3.12)

F2 = µ · mg

1 + µ2 (3.13)

Which yields, when replacing into (3.11) and simplifying:

µ2((1 ≠ p)cos(◊) + k) + µ(2sin(◊) + k) ≠ (1 + p)cos(◊) = 0 (3.14)

Finally, as this a simple 2nd degree function, for a chosen aspect ratio k, µ can be extracted using the
well-known formula:

µ = ≠b ±
Ô

b2 ≠ 4ac

2a
(3.15)

with only the positive value of µ being considered
The results of (3.14) for a fixed position of the CoM are illustrated in 3.3.

All friction values above the drawn line satisfy the equilibrium condition. The line stops at a certain
value which corresponds to k

lim

computed earlier. The design space is the result of the combination of

20 CHAPTER 3. ROBOT MODEL AND GEOMETRICAL OPTIMIZATION

Figure 3.3: illustration of function (3.14) : necessary friction to climb with a given aspect ratio; all points in shaded
region are valid

the geometrical and friction conditions and it is drawn in figure 3.4a
It can be noticed that the point where the friction is lowest corresponds also to the biggest aspect

ratio, and represents the optimal geometry given a constant o�set of the CoM. This is due to the mono-
tonically decreasing function µ(k) (equation (3.15)) and intuitively, to the fact that larger friction forces
are necessary to hold a longer object inclined against a wall. This is doubly convenient, however each line
stops at a specific k

limit

, after which the geometry of the robot does not allow tipover any more. Figures
3.4b shows how this optimal design point varies with the position of the CoM and 3.5b illustrates the
optimal design line.

The more the CoM is located at the back, the lower is the friction required to climb, hence the “easier”
is the climbing. However, the maximum reachable aspect ratio k

limit

is smaller. This ratio is only given
by the geometric constraints on the tipover condition. The more the CoM is located at the front, the
larger can the aspect ratio be, but climbing requires a higher friction.

(a) illustration of a minimum friction line for a
fixed o�set of the CoM of 30% of L ; all points in
shaded region are valid for climbing

(b) illustration of several minimum friction lines
for di�erent o�sets of the CoM, from -30 to 90 of
L %

Figure 3.4: variation of the minimum coe�cient of friction necessary to climb with respect to the aspect ratio
k = height

length

3.1. SIMPLE ROBOT MODEL 21

(a) (b)

Figure 3.5: optimal design line: for each o�set of the CoM the last point of the minimum friction line is taken (left)
and represented on a separate curve (right)

3.1.2 Case II - climbing on a structure

Ultimately all robots should be able to assemble into a structure. Being able to climb on one robot
is not su�cient to ensure successful climbing on a structure, as this depends on the position that each
one occupies (e.g. a robot could not climb on two other robots stacked exactly on top of each other).
Simplifying the problem to a 2D pyramid, the necessary conditions on the overall configuration of the
structure can be derived.

Two possible climbing scenarios can occur:

• the robots form a long staircase structure, where the length of each step is the equal to the entire
length of the robot

• the robots form a more short staircase structure, where each step length is nor long enough for
the robot to return back to the horizontal position, but neither short enough to make climbing
impossible

�,� �,,�

Figure 3.6: two possible structure configurations: either the robot can return to horizontal position as an intermediate
step of the ascension, or it continues the ascension with the same or smaller orientation angle; the climbing robot
is represented in red

These two scenarios are illustrated in figure 3.6. In the first case, the robot is able to return to the
initial horizontal position before tackling the next climb. No additional conditions are required for suc-

22 CHAPTER 3. ROBOT MODEL AND GEOMETRICAL OPTIMIZATION

cessful climbing.
In the second case, the robot continues on climbing with an equal (or smaller angle), without returning
to the horizontal position. This requires new constraints on the length and friction.

For simplicity, the other robots are assumed here to have right-angled edges as in a staircase. At the
moment when the CoM has reached the tip of the first stair, the nose of the robot should already be
above the second tip as shown in figure 3.7.

Figure 3.7: simplification of climbing on several layers of robots; as in a standard inclined plane problem, the friction
coe�cient has to be larger than the tangent of the inclination angle for the robot to hold still

At this moment, no forces exist anymore on point A and the configuration of the support forces
changes. While the one on B stays the same, the support force on C will be perpendicular to the robot
track. In order for the static equilibrium to be held in this new configuration:

µ(N1 + N2) = mg · sin(◊)

with N1, N2 the normal support forces as shown in 3.7
As in a standard “ramp” problem, N1 = N2 = cos(◊) which yield in :

µ Ø tan(◊) (3.16)

which is the necessary condition for climbing on several layers of robots. This additional condition has
an impact on the allowable aspect ratio, as shown in figure 3.8. It is a result of adding this new condition
on the design space from illustrated in 3.5a.

It can be observed that this additional condition has significant impact only for the cases where the
CoM is at the back of the robot, as in these cases the angle to be attained is higher.

3.2 Flipper Robot Model

The previous chapter has outlined the main performances that can be achieved with the most basic of
robots. It has been demonstrated that by putting the CoM at the back of the robot, less friction is

3.2. FLIPPER ROBOT MODEL 23

Figure 3.8: additional static condition on µ: figure 3.5a is represented with the additional condition (3.16) in dashed-
dotted lines; the green dashed line represents the reunion between the two conditions; a robot can climb on another
and on several layers of robots if its design is situated above the green dashed line

needed for climbing. By doing so however, the maximal geometrical limit of the robot’s aspect ratio is
also decreasing. From the perspective of climbing capabilities, a long robot with the CoM in the front is
desired. On the other hand, one of the initial goals is to have as big of an aspect ratio as possible. One
of the easiest modifications that can be done to the initial design without complicating the theoretical
analysis, is adding retractable flippers (as shown in 3.10).

Figure 3.10: example of robot with flip-
pers

The robot could extend the flippers when climbing and re-
tract them when waiting/ supporting other robots in a pile.
It is therefore considered that a robot with flippers occupies
the same place in the pile as one without, but behaves at
climbing as one with lower aspect ratio and a changed rel-
ative position of the CoM. This is a significant step further
in reconciling both of the aforementioned contradictory condi-
tions

If it is assumed that the flippers are of inconsiderable weight
compared to the rest of the robot, the CoM will remain in the same
(absolute) position. The only things that will change compared to
the original robot is the aspect ratio, and the relative position
of the CoM. Thus, comparing a simple robot with a robot with
flippers, for a same aspect ratio, one performs significantly better at climbing than the other, as shows
figure 3.9

24 CHAPTER 3. ROBOT MODEL AND GEOMETRICAL OPTIMIZATION

Figure 3.9: performance comparison between robots with di�erent flipper lengths; green line represents flippers of
the same size as the robot, which makes the new total length twice the initial one, whereas blue line represents no
flippers at all;

The blue line of figure 3.9 is the same as the one from 3.5b. The other two lines represent robots with
flippers.

Chapter 4

Mechanical Design

As the purpose of the robot is also to serve as a mobile building block, one desirable feature is symmetry.
The overall shape has also to be as regular as possible to provide a stable support for the next robot.
Size is not a constraint, yet the bigger the robot, the greater the manufacturing costs and 3D printing
time. It is decided to keep the robot as small as the size of standard robotics components allow it.

Another desired feature for robust climbing is high clearance, in order to avoid as much as possible
contact with other robots and objects other than with the tracks.

Succinctly, the robot is tank-treaded and has actuated flippers. The flippers have wheels at the end,
which are independently actuated by another pair of tracks. A total of 3 motors are used: two for the
track transmission, and one for the worm gear actuating the flippers. A commented overview of the whole
assembly is proposed in 4.1. All parts except the deck are 3D-printed on a uPrint SE (Stratasys) out of
ABS.

4.1 Tracks

Figure 4.2: Tamyia track set from [43]

The first components to be chosen are the tracks. Based on
how well they grip and adhere, suitable motors have to be
found and their size will dictate the dimensions of the rest of
the robot.

Tamyia tracks are low-cost, modular, and present good
adhesion characteristics because of their protruded grousers
and the material (soft rubber) they are made of. Furthermore,
holes allow for very good fixation on a spur gear, which is a
key feature in preventing them from slipping out in the cases
of entanglement and shear e�ort.

4.2 Worm drive

Among other transmission possibilities between the motor and the flipper axle (belt, cable, chain, spur
gears) , a worm-drive is chosen because of its compactness and self-locking capability. The motor can

25

26 CHAPTER 4. MECHANICAL DESIGN

'LIIHUHQWLDO�'ULYH�0RWRUV�
������ZLWK�H[WHQGHG�VKDIWV�IRU�
HQFRGHUV

$[LDO�/LPLWHUV
FRQVWUDLQW�WKH�
IOLSSHU�D[OH�
D[LDOO\

ZRUP�GULYH�VXSSRUW
PDLQWDLQV�ZRUP�DQG�VSXU�
JHDU�DW�FRQVWDQW�GLVWDQFH

7HIORQ�EXVKLQJV�
DOORZ�IOLSSHU�D[OH�
URWDWLRQ�WKURXJK�WKH�
GRXEOH�ZKHHO

$SULO7DJ�VORW�
IRU�ODWHU�URERW�
LGHQWLILFDWLRQ

6OHHYH�EHDULQJ�
NHHSV�FRQQHFWLRQ�EHDP�
SHUSHUQGLFXODU�WR�WKH�
D[OH�ZKLOH�DOORZLQJ�
UDGLDO�VORS�IRU�HDV\�
DVVHPEO\&RQQHFWLRQ�EHDP��

FRQQHFWV�IOLSSHU�ZKHHO�
ZLWK�D[OH

)OLSSHU�0RWRU�

([WUXVLRQ�
HQKDQFHV�ODWHUDO�
FOLPELQJ�DQG�
UHGXFHV�EHDP�
IHO[LRQ

ZRUP�GULYH�
FRPSDFW�DQG�VHOI�ORFNLQJ�
WUDQVPLVVLRQ�EHWZHHQ�PRWRU�
DQG�IOLSSHU�D[OH

Figure 4.1: commented overview of the robot assembly

be placed adjacent to the axle, occupying a minimum of space.

The key feature to be considered when choosing the worm drive is non-backdrivability, or the self-
locking capability. It is approximatively correct to say that for a worm drive to be self-locking, the same
law for an object on an inclined surface applies.

µ > tan(◊)

where µ is the friction coe�cient between gear materials and ◊ the lead angle of the worm gear. The
worm gear is out of stainless steel and will be mounted on the motor shaft, whereas the spur gear on the
flipper axle is made out of bronze. In this case, the coe�cient of friction between bronze and steel is ¥
0.16 which is more than twice than the lead angle of the worm gear (7¶7’).

For speed consideration, a low transmission ratio is chosen. The spur gear has 30 teeth, and double
thread, which means the transmission ratio = 15.

4.3. MOTORS 27

4.3 Motors

4.3.1 Wheels

One of the most determinant components for the design of the chassis, and hence for the whole robot is
the size of the motor. The motors are dimensioned based on the model and computations presented in
chapter 3. As a results of (3.15) the necessary torque for each motor is :

M
tot

= M1 + M2 = F1 · R + F2 · R

= µ · mg

1 + µ2 · R + µ2 · mg

1 + µ2 · R

= µ(1 + µ) · mg

1 + µ2 · R

with M1 the back wheel torque, and M2 the front wheel torque and R the wheel radius.

Figure 4.3 illustrates the torque for each wheel needed to maintain the robot in static equilibrium
given a certain friction coe�cient. The rolling coe�cient is assumed non-existent. As one track connects
the two wheels, obviously only one motor is used, and the total torque that it should provide is shown as
well.

Figure 4.3: with a mass of 0.5 kg, a radius of 4.5 cm and a friction of 1.8

For a given friction µ, there exists an aspect ratio and a position of the CoM that makes climbing
possible, as has been shown in the previous theoretical analysis. Hence, a reliable µ has to be chosen and
the motor torque has to be computed accordingly.

Rubber on rubber has a friction coe�cient of about 1.1, but when the tracks are aligned the grousers
grip very well, being able to maintain friction on a ramp of more than 60¶. In this case, a friction
coe�cient of ¥1.8 is chosen for the torque computation, as it gives also a satisfying safety-factor.

From figure 4.3 it results that a motor with a nominal torque of around 0.25Nm is desired.
The Pololu high power 298:1 Micro Metal Gearmotors have this characteristic while coming in a very

28 CHAPTER 4. MECHANICAL DESIGN

Figure 4.4: 298:1 HP Micro Metal Gearmotor with extended shaft for encoders http: // www. pololu. com/
product/ 2208

compact form. The integrated gearbox simplifies the design, as the robot wheel can be directly mounted
on the motor output axle. An extended shaft is a also a comfortable option, and avoids a custom designed
encoder. Adequate motor brackets facilitate attachment to the chassis.

The main specifications are listed in the chart below 4.1

Motor type Stall Current (6V) No-Load Current (6V) No-Load Speed (6V) Stall Torque
high-power 1.6 A 0.07 A 100 RPM 0.5 Nm

Table 4.1: motor specifications

4.3.2 Worm Gear

Two options are available: either a servo motor, or again a DC motor with encoder. In order to recover
the robot after an overturn, it is necessary to have flippers move 360¶, which is di�cult with a servo
(usually limited to only 180¶). Moreover, the servo output shaft has a non-standard design and is very
di�cult to find one that fits to the desired worm gear.

)� PJ
)�

0

Figure 4.5: forces exerted in an extreme situation: the full arrows represent the e�orts on the robot body (excluding
the flipper)

For a rough estimation, it is considered that the robot has to maintain its own body weight horizontally
with the CoM located on the front wheel, as shown in figure 4.5. With a weightless flipper, the static
equations for the robot body would yield:

M = mg · L

2

http://www.pololu.com/product/2208
http://www.pololu.com/product/2208

4.4. CHASSIS 29

For a weight of 0.5kg and a length of 10cm, M = 0.25 Nm. This however stays a very optimistic
estimation, as it neglects the friction force between spur and worm gear, which can be considerable in a
case of bad assembly. The transmission ratio of 15 will however allow for enough safety margin.

Hence, the same choice (298:1 HP motor) as before is done for the worm gear motor too.

4.4 Chassis

From the size of the motor and of the worm drive, the overall size of the chassis can be established.
The alignment of the track wheels and the position of the worm gear motor are essential features to pay
attention to. Figure 4.6 explains the key design details.

VORWV�IRU�,5�VHQVRUV��
DOORZV�GLIIHUHQW�
SRVVLELOLWLHV�IRU�VHQVRU�
SODFLQJ

VORW�IRU�ZRUP�GULYH�PRGXOH��
DOORZV�IRU�YHUWLFDO�
GLVSODFHPHQW�LQGHSHQGHQW�
IURP��WKH�FKDVVLV�

REORQJ�PRWRU�VXSSRUW�KROHV�
DOORZ�DGMXVWDEOH�WHQVLRQ�LQ�
WKH�WUDFNV

VORW�IRU�,&63�KHDGHU�SLQV��
DOORZV�HDV\�DFFHVV�WR�WKH�
$UGXLQR�ERDUG�SURJUDPPLQJ�
SLQV

FDPHUD�IL[DWLRQ
IRUZDUG�FOHDUDQFH�
DOORZV�FOLPELQJ�RQ�
URERW�FRUQHUV�

YHUWLFDO�VSDFHUV�
OLPLWV�EHQGLQJ�RI�WKH�
WUDFNV�ZKHQ�DQRWKHU�
URERW�LV�RQ�WRS

IUHH�VORWV�IRU�HYHQWXDO�
EXPSHU�VHQVRUV��

%DWWHU\�KROGHU�
DQG�$SULO7DJ�
VXSSRUW

VORW�IRU�WHIORQ�EXVKLQJV�
IRU�WKH�IOLSSHU�D[OH�

Figure 4.6: robot chassis with main characteristics

30 CHAPTER 4. MECHANICAL DESIGN

4.5 Worm Drive Support

It is essential to ensure that the contact distance between worm and spur gear will stays within controlled
limits, or else gear unmeshing might occur when the torque increases. Therefore, a support is designed
to hold the axle and the motor at constant distance. The part is independent from the chassis and a slot
in the latter allows for it to move vertically while constrained horizontally and laterally.

An illustration is provided in figure 4.7

Figure 4.7: the worm drive support - illustrated in red

4.6 Wheels

Based on the pitch diameter of the wheels (0.477) included in the Tamyia track pack, custom wheels are
designed. The robot has 3 pairs of slightly di�erent wheels. The motors wheels are provided with a set
screw for fixation on the motor, whereas the flipper wheels spin freely around a 4-40 screw spacer. The
screw head and a nut at the other end constrain them axially.

The double wheels ensure the transmission between the motor and the flipper wheels. They are also
provided with Teflon bearings, allowing the flipper axle to turn independently through.

4.7 Deck

In order to stay faithful to the theoretical model, the deck should not be higher than the wheels. If this
happens, this will act like a rail, guiding forwards the next robot that will climb. This e�ect is undesired,
because by guiding the tracks small maneuvers on top of a robot become even more challenging. It would
basically act as a small docking/alignment mechanism, as in modular robots designs, which has to be
avoided.

The deck is a simple flat surface with a pattern on it allowing the robot on top to localize its position
when coming from the rear. The longitudinal stripe is for alignment and line following, whereas the

4.7. DECK 31

transverse one is for edge detection and counting. As the tracks are also black, the IR sensors would
receive relevant information when on top of them.

Figure 4.8: robot deck with longitudinal and transverse withe stripe for line following and edge detection

It is laser-cut in a 2.5mm thick acrylic sheet, allowing fast and low-cost replications. Electrical duct
tape is used for the black pattern and normal paper for the white stripes. The latter are 2cm thick,
matching the size of the IR sensor slots in the chassis (figure 4.6).

Chapter 5

Embodiment and Climbing Assessment

For the first model to be built, a conservative aspect ratio of 0.37 has been picked. The robot is meant
to be able to climb on random obstacles (books, boxes) which do not o�er a very high amount of friction
(¥ 0.5). Its purpose is also to see what problems might arise from the interaction between two robots .
Some pictures of the embodiment are shown below (figure 5.1).

(a) (b)

Figure 5.1: 1st model built with a prudent aspect ratio of 0.37; only the minimum electronics for remote controlling
are present; the flushed frontal design of the chassis does not allow it to tackle obstacles diagonally

The robot has a height of around 52mm, an inter-axis length of 140mm a width of 170 mm, a mass
of 441g and an o�set of the CoM d = 0.16%. The latter is determined by holding the robot by a string
attached to one of its coners and observing how the posture of the robot is a�ected by gravity. This is done
from two di�erent corners, the angles are mesured, and d is obtained using straightforward trigonometry

The robot can climb on books more than twice its height (>11cm), and has no problem climbing on
a fellow robot. When coming at a 90¶ angle to another robot, it can also climb without flippers. In this
configuration, 16 trials have been conducted, where a robot has to climb on another. The robots are
manually placed and are either facing each other or at a 90¶ angle. No failures have been recorded.

When trying to climb diagonally (with an angle around 30-70¶) however, the robot would get stuck

32

33

Figure 5.2: illustration of climbing on an obstacle more than twice the height of the robot

Figure 5.3: second embodiment with an aspect ratio of k = 0.7

on the corner. The flippers can be used to push out of the position, yet it does not constitute a satisfying
solution. To simplify subsequent sensing and planing, the robot should be able to climb without getting
stuck.

Besides failure on the corner, the robot aspect ratio has been too conservatively chosen, which calls
for a redesign. A second model is build, with a double aspect ratio, and a more thorough assessment
is done. Emphasis is also put on having a high clearance from the ground and from the front. Clearance
from the front (as shown in 4.6) help in tackling with corners and clearance from the ground avoids situ-
ation where the robot would get stuck on the edge of another, as shown in figure 5.5. This latter design
is the final one and is the embodiment of the CAD schematics shown previously.

The characteristics of the both robots are shown are detailed in chart 5.1. Figure 5.4 situates the
realized robots in the theoretical analysis, while giving an idea of their performance relative to each other.

34 CHAPTER 5. EMBODIMENT AND CLIMBING ASSESSMENT

The di�erence in needed friction with and without flippers for the first design can be easily noticed. It
can also be observed that while doubling the aspect ratio, the necessary µ increases only from ¥ 0.5 to
¥ 0.7.

design aspect ratio height (mm) L
total

(mm) L
interaxis

(mm) width (mm) CoM (% of length)
1st 0.37 52 183 140 170 16
2nd 0.7 74 176 105 180 64

Table 5.1: robot specifications

Figure 5.4: situation of the 2 designs with respect to the theoretical predictions; 1st design is represented with open
and closed flippers, while the second only with open flippers (for visibility reasons)

5.1 Climbing Assessment

The goal of this section is to prove that the second robot design is capable of robustly climbing on
identical fellows, and that it constitutes a solid platform for any further or related work on construction
through self-assembly. Independently of its possible application, it is necessary to prove that climbing
and mechanics will not constitute an issue.

5.1.1 Phase I

In a first phase, the robot has to climb on another fellow from 10 di�erent angles, and for each angle
10 trials are conducted. This is first done with the flippers forwards, second with the flippers forwards
but with additional weight on them (100g), and finally with the flippers backwards. The robot always
starts from a distance of 34cm to the other one (center-to-center), with a di�erent angle –, as shown in 5.6.

The results are shown in the charts from 5.7. For each case, there are three possible outcomes: success
(blue), failure (red), or misalignment(orange).backwards is declared when the robot ends on top of the

5.1. CLIMBING ASSESSMENT 35

�,�

�,,�

FOHDUDQFH

Figure 5.5: ground clearance and side stuck position: most of the robot’s weight is supported by red point (I), which
means there is not enough wheight on (II) to ensure traction

other, and remains in a stable position, horizontally. Failure occurs when the robot does not make it to
the top at all (sliding, or being stuck). Finally, “misalignment” means the robot has climbed, but does
not stop in a stable horizontal position, by for instance sliding on the edge of the robot beneath (ending
a situation similar to the one from figure 5.10).

Due to the high aspect ratio, it can be observed that climbing with the flippers forwards is almost
impossible when the robot is not heading perpendicularly towards the other one. With weight on the
forward flippers, this can solved. However, this is not a satisfying solution, as the weights on the flipper
destabilize the robot during deployment and retraction, leading sometimes to its falling down from the
structure.
Driving with the flippers backwards o�ers the advantage of significantly shifting the CoM of the robot
forwards, while keeping most of its climbing capabilities, as can be seen in figure 5.6. Furthermore, the
flippers can be manipulated without any loss of balance. This configuration will be kept for the rest of
the work.

Į

�,�

Į

�,D�

Figure 5.6: di�erent climbing configurations: with flippers backwards (I) and flippers forwards (Ia);

36 CHAPTER 5. EMBODIMENT AND CLIMBING ASSESSMENT

Figure 5.7: results in climbing from di�erent angle in di�erent configurations; 10 trials have been conducted for
each angle (spanning from 0 to 170¶); successes are indicated in blue, failures in red , and slides in orange; the
backwards configuration is kept as definitive

5.1.2 Phase II & III

In a second phase, climbing from a shifted position is assessed, for di�erent o�sets, 10 trials each time.
Finally, a third setup assesses climbing on two layer of robots. The robot on the second layer is set up
with a di�erent angular o�set with respect to the rest of the structure, as shown in 5.8

The purpose of the second phase is to demonstrate that even severe misalignments preceding climbing
do not lead to a position where the robot would get stuck. The Robot has a total width of around 18cm,
and the most di�cult situation occurs when the o�set is close to half of its length (8 - 10 cm). In this
situation, the configuration of the robot resembles the one sketched in 5.5. Because of the symmetry of the
robot, a contact point near the sagittal plane will result in a loss of traction force, and to a stand-still of
the robot despite the turning tracks. Two factors contribute to avoid this problem: the ground clearance
and the width of the robot. However, for symmetry reasons, the width has to be close to the length, and
due to the position of the robot wheel axis, the maximum possible clearance is also limited, which leaves
very few degrees of freedom for more changes.

Finally, the third phase is meant to show that climbing can be performed on two robot layers indepen-
dently of the last robot’s orientation. Results from the right figure 5.9 are also divided in “success”(blue),
“side” (orange) and “misalignment” (grey). In the first case the robot climbs to the top and stops in a
stable position. Idem in the second, but this time it slides on the side of the last robot (similar to the
position illustrated in 5.10. In the third case, after climbing half the way, the robot is not properly aligned

5.1. CLIMBING ASSESSMENT 37

;

�,,�
�,,,�

Į

Figure 5.8: phase (II) is meant to assess how often the robot would get stuck on the side (as sketched in 5.10 and
phase (III) is meant to assess the performance of climbing on a 2-layered structure

anymore, and slides before reached on the second level. This is not considered a failure, as it constitutes
more of a sensing than a climbing problem.

To conclude with, if the robot is to drive with the flippers backwards, an aspect ratio of 0.7 presents
satisfying climbing robustness. Given the occasional failures however, it would certainly not be wise to
push it further.

38 CHAPTER 5. EMBODIMENT AND CLIMBING ASSESSMENT

Figure 5.9: results of phase II (climbing from a shifted position) and of phase III (climbing on 2 robot layers); in phase
II, “di�cult” means the robot gets temporarily stuck in a position similar to 5.10, and in phase III “misalignment”
occurs when the robot falls before the second layer is reached

�,�
�,,�

FOHDUDQFH

Figure 5.10: sliding on the edge of another robot can occur after climbing; although the robot is not stuck, the
climbing has to be repeated, because it is not considered a stable position for further construction

Chapter 6

Towards Full Autonomy

In the previous chapters, the construction of a climbing robot with flippers has been detailed and justified.
An optimal size for the robot has been chosen based on mathematical considerations and the climbing
capabilities have been assessed. The results have shown that climbing on an identical fellow can be done
in a robust manner and in a multitude of configurations.
The robot has now all the needed physical characteristics to be involved in the autonomous construction
of a structure.

For the following steps, the goal is to pick a type of structure and implement an algorithm that would
lead to its autonomous assembly/construction.

6.1 Choosing a Structure

Social insects can “self-assemble” to form rafts, chains, bivouacs, towers, and bridges. In our case, a
structure has to be chosen that demonstrates both the climbing and self-organization characteristics of
the robots. The possibilities span from 2D and 3D pyramids to ramps, and cantilevers. Furthermore, the
structures can be stand-alone (made only out of robots) or include objects from the environment.

(a) 2D pyramid, or tower (b) 2D ramp

Figure 6.1: some possibilities of self-assembled structures; the 2D tower is chosen

39

40 CHAPTER 6. TOWARDS FULL AUTONOMY

It is decided that if the robots are capable of building a stand-alone 2D tower, they would nec-
essarily be equipped with most of the necessary sensors to achieve more complex structure building in
3D. Furthermore, it would also allow the demonstration of an algorithm scalable to an arbitrary-sized
structure. The same kind of algorithm could then easily be extended to involve also random objects from
the environment.

6.2 Building a 2D Tower

6.2.1 Challenges

Building a stand-alone 2D tower implies solving the following issues:

1. localization & navigation : find the position relative to other robots / to the structure and
navigate to them

2. alignment : find the orientation relative to other robots and go to a favorable orientation for
climbing

3. climbing : decide on starting and ending point for climbing

4. positioning : find which place in the structure is to be occupied and go to it

Furthermore, because of the mechanical aspects of the tracks, the robot has severely limited maneuver-
ability when on top of another one. High track-on-track friction as well as the grousers on the tank-treads
prohibit big rotations but practical experience shows that they allow for small maneuvers, such as for the
ones required in line following.

This means that all orientation issues have to be solved prior to climbing. In other words, the robots
have to be as well aligned as possibles before starting climbing, as this will directly influence their capa-
bility of reaching the desired position in the structure.

6.2.2 Solutions & Sensors

Figure 6.2: a Rasp-
berry PI camera is
used for navigation and
alignment

To deal with issue 1 and 2, robots in literature often use IR emitters
and receivers. Docking systems are an example of such applications. The
Roomba robot (iRobot) uses a 360¶ lens and a docking station with 2
IR beams to find its way back and dock. A similar system is detailed
in [44]. Although this may work with a single robot and one dock-
ing station, it this di�cult to see how this solution would scale to a
multitude of robots, and how all the IR emitters and transmitters would
have to be mounted on the existing mechanical design in order to achieve
this.

Moreover, a careful electrical design would be necessary to encode the IR on
di�erent channels, filter noise, and avoid interferences. One last drawback would

6.2. BUILDING A 2D TOWER 41

be that the robots in the structure will have to continuously emit IR light (and consume battery).

A camera avoids all of the aforementioned issues. Cameras have become more and more accurate and
a�ordable. A Rasberry Pi camera 6.2 costs below 30$ and has a resolution of 5MP. However, markers have
to be used and image processing often comes with at a heavy computational expense. The computational
power can be provided by an Raspberry PI, model B (BCM2835 chip, 512 RAM, 700 MHz, running
Linux), which provides a compact, low-cost and user-friendly way to exploit the camera’s capacities.

To deal with issue 3, an accelerometer (LSM303DLHC 3D, Pololu) is used. Based on the gravity
force vector, the robot can extract the angle and infer if it is in a horizontal position or not. The robot
can know when to start and stop climbing, and can use its flippers to reposition if it is turned over.

Finally, in order to deal with issue 4 a combination between IR sensors, motor encoders, camera and
accelerometer will be used. The IR sensors (QTR-L-1A, Pololu) will provide the robot with guidance
when on top of another one (figure 6.3), and the motor encoders (Optical Encoder Pair, Pololu) will
provide relevant information on the travelled distance.

(a) bottom view: position of IR sensors (b) top view: guidance pattern

Figure 6.3: bottom and top view of the robot; when on another robot, the robot mostly relies on its IR sensors; the
longitudinal white pattern guides the robot and the transverse one indicates an imminent edge

Because of the high clearance to the ground(27mm) that the robot has, the IR sensors have been
picked such as to give reliable results at a distance of at least 0-20mm. However, such a relatively big
distance makes measurement much more sensitive to noise, and especially shading.

The motor encoders have been chosen such as to be mounted on the extended shaft of the motor, in
a compact way without additional custom design.

6.2.3 Electronics - Overview

The algorithms and behaviors are programmed on a Arduino Micro (atmega32u4), and all the sensors are
connected to it, except the camera that is connected to the Raspeberry PI (RPI). The latter communicates
serially with the Arduino.

42 CHAPTER 6. TOWARDS FULL AUTONOMY

Other than the already mentioned sensors and chips, 2 motor drivers (DRV8833, Pololu) are used to
power the motors. A LiIo battery (7.2V, 660mAh) supplies the drivers with power. An Anker c•Astro
Mini portable charger (5V, 3000 mAh, 1A output) is used to power the RPI and all other devices.

ș

0

6HULDO,�&

$QDORJ

$FFHOHURPHWHU

,5�6HQVRUV���[�

5DVSEHUU\�3L

53,�FDP

0RWRU�'ULYHUV�
��[�

HQFRGHUV���[�

PRWRUV���[�

$QDORJ
3:0

Figure 6.4: overall schematic of the robot’s electrical components; black arrows are inputs and red are outputs; the
communication protocol is indicated in italic

For debugging purposes, a PGM01A programmer, providing serial communication with the Arduino,
is used.

An overview of the electrical components and their placement in the robot is given in figure 6.5. Figure
6.4 proposes an overall electrical schematic of the robot and indicates the communication protocol each
sensor uses.

6.2.4 Solving the Alignment Problem

As already emphasized, alignment is essential for achieving a structured construction. The robot has been
purposely designed without mechanical alignment features, in order to avoid lattice-like structures. The
camera is thus the most suitable for such a system, allowing flexibility, and a wide span of operations
while having only small impact on the mechanical design.

Extracting position and orientation of other robots through image processing alone is not trivial. One
of the easiest way to do it is using fiducial tags and use appropriate mathematics to extract position and
orientation. In our case, 3D orientation is extracted using April Tags.

In [45], a method for robustly extracting April Tags from an image is described. Edges are detected
by computing the magnitude and direction of adjacent pixels. The results are then clustered together

6.2. BUILDING A 2D TOWER 43

53,�FDP��
IRU�ORFDOL]DWLRQ��
DQG�DOLJQPHQW

IURQW�,5�VHQVRUV�
IRU�IRUZDUG�OLQH�
IROORZLQJ

$FFHOHURPHWHU��
IRU�LQFOLQDWLRQ�DQJOH�
PHDVXUHPHQW

UHDU�5�VHQVRUV�
IRU�EDFNZDUG�OLQH�
IROORZLQJ

0LFURFRQWUROOHU�
$UGXLQR�0LFUR

0RWRU�GULYHUV

H[WHQGHG�VKDIW�IRU�
PRWRU�HQFRGHU��
IRU�SUHFLVH�
PDQHXYHUV�ZKHQ�
RWKHU�VHQVRUV�
LQSXW�LV�PLVVLQJ

Figure 6.5: overview and placement of the sensors in the robot; the RPI board and batteries are omitted for visibility
purposes

(a) (b)

Figure 6.6: example of April Tag detection: for visualization purposes, a rectangle is drawn around the tag when
detected; orientation information is then extracted using homography

44 CHAPTER 6. TOWARDS FULL AUTONOMY

and line segments are fit using a least-square procedure. All 4-sided shapes (named “quads”) are then
extracted. Figure 6.6 illustrates the result of the extraction algorithm.

Finally, given the size of the Tag, the distance to it can be computed, and an isomorphism called
homography is used to extract the 3D orientation. Using C++ libraries available on-line 1, the code is
implemented on the Raspberry PI. April Tags are placed on the back of the robot and the camera is
added in the front, as shown in 6.7. Later on, AprilTags should also cover the sides of the robot.

The April Tag detection algorithm works on the RPI at around 2.9 fps.

(a) robot front : camera (b) robot back : April Tag

Figure 6.7: position of the camera and of the April Tag on a robot

6.3 Construction Algorithm

In order to achieve a robust algorithm for self-assembly, and given the context of collective robots, the
following criteria are compulsory:

• the algorithm should be independent of the size of the structure

• the algorithm should be the same on all robots

Two reasonable ways of building a 2D tower with 6 robots are listed below.
Each robot has to follow the steps that have been already cited in section 6.2.1: localization, align-

ment, climbing and positioning in the right spot. The second algorithm has to be excluded, because it
requires a prior knowledge of the final length of the structure in order to build a base of adequate length.
In contrast to that, the first algorithm will keep on incrementing along the initial 3 positions, without the
need of building a base of a specific length. Moreover, it reduces the travel distance of a robot on a layer
of other robots, which is a big plus.

A very general pseudo-code is shown below:
1http://people.csail.mit.edu/kaess/apriltags/

http://people.csail.mit.edu/kaess/apriltags/

6.3. CONSTRUCTION ALGORITHM 45

� � �
� �

�

�,,�

� � �
� �

�

�,�

Figure 6.8: possible orders for a 2D tower with 6 robots: the first 3 steps are highlighted in red for better visibility

while (1) do
if robot seen then

align and climb
else if climbed and horizontal again then

if robot seen in front then
align to it, don’t climb; break ; Û position 5

else
count number of robots beneath
if 2 robots beneath then

go in the middle of the two underlying robots; break; Û position 3, 6
else if 1 robot beneath then

go align behind it; break; Û position 2, 4
end if

end if
end if

end while
The comments on the right indicate when the robot exits the algorithm. The position number applies

to the order from figure 6.8. An illustration of all the steps of this algorithm for a 6 robot pyramid
structure is shown in figure 6.9.

6.3.1 Implementation

A global structure formation strategy has been given. The implementation is done while applying the
criteria below. It should:

• limit as mush as possible maneuvers on top of other robots (high track-on-track friction makes
maneuvering unreliable and unsafe)

• limit open-loop maneuvers (a lot sliding and slipping occurs, which biases the motor encoder infor-
mation)

• provide additional safety by doing redundant sensing (i.e. more than one sensor is used to detect
the same feature)

46 CHAPTER 6. TOWARDS FULL AUTONOMY

,,,

"

,, ,

"

,,,

,, ,

"

,,,

,9 ,, ,

"

,,,

,9

,, ,

"

,,,

,9

9

9

9,

3KDVH�,, 3KDVH�,,,

3KDVH�,9 3KDVH�9

3KDVH�9,

Figure 6.9: illustration of an arbitrary-sized structure formation algorithm for a 2D pyramid; the first 6 steps are
shown; generally, the robot has to climb and count the number of robots beneath; from an algorithmic perspective,
phase II is the same as phase IV, and III the same as VI; in phase V counting is not necessary as an April Tag is
detected directly after climbing; this algorithm can be reiterated for an arbitrary-sized structure and stays the same
for each robot

6.3. CONSTRUCTION ALGORITHM 47

(a) start (b) climbing (c) repositioning

(d) checking edges & counting (e) climbing down (f) realigning

Figure 6.10: recording of phase II; the exact same strategy is iterated in phase IV

(g) start (h) climbing (i) repositioning

(j) checking edges & counting (k) final positioning (l) folding flippers back

Figure 6.11: recording of phase III; the exact same strategy is reiterated on phase VI

(a) start (b) climbing (c) following April Tag

Figure 6.12: recording of phase V

48 CHAPTER 6. TOWARDS FULL AUTONOMY

As already mentioned in precedent chapters, April Tag orientation is used for navigation and align-
ment, IR sensors for navigation and counting when on top of another robot, accelerometer for detecting
edge of the structure, and the encoders for small and precise maneuvers. The encoders are not connected
to hardware interrupts pins of the Arduino, which means that when the encoders are used, no other
sensors can be simultaneously read, and the robot is thus considered in open loop.

Figure 6.13: top-to-bottom code implementation scheme, from high-level behaviors to hardware interfacing

A more detailed pseudo-code for the instruction “count robots beneath” mentioned above is provided
below with comments on the used sensors. The function is called as soon as the robot has stopped
climbing (i.e. accelerometer indicates horizontal again) :

The key feature here is that the robot uses its accelerometer to detect when it is about to
fall. IR sensors and motor encoders provide some additional information to increase the robustness of
this sensing. However, this still remains one of the most common failures when running the algorithm.

In general, functions such as countRobotsBeneath() are decomposed in several behaviors, with the
whole program being a finite-state machine implementation. Each behavior calls more intermediate-layer
functions, which call other low-level, hardware-related functions or drivers, as shown in 6.13.

function countRobotsBeneath()
go back until the edge of the robot beneath is reached Û encoders, accelerometer
while accelerometer indicates horizontal do Û accelerometer

6.3. CONSTRUCTION ALGORITHM 49

follow edge while counting the number of transverse white stripes Û IR
end while
back up a little to avoid falling
if one robot beneath counted then

go down backwards, and realign with the April Tag; break; Û camera
else if two robots beneath counted then

follow line backwards until the middle of the two robots is reached Û IR sensors
end if

end function
The alignment using camera and April Tags with a non-holonomic robot is a non-trivial one. Not only

the position, but also the orientation of the robot have to be simultaneously controlled. A closed-loop
control law has to be found.

Closed-Loop Control

Given the non-holonomic system in figure 6.14, a control law is desired that links the orientation output
by the camera to the wheel speed. By conducting a similar analysis as in [46], the following relationships
are derived:

Ȗ Į

ȡ
s

r

ȕ

Ȧ

p

$s

$r

Figure 6.14: alignment with non-holonomic robots: fl, –, and — have to be controlled to 0; x ,y and “ are extracted
using the camera, April Tags and homography

fl =
Ò

x2 + y2 (6.1)

– = ≠atan(y

x
) (6.2)

— = – ≠ “ ≠ fi

2 (6.3)

where x and y are the projections of the distance fl in the local coordinate frame of the robot (O
x

, O
y

),

50 CHAPTER 6. TOWARDS FULL AUTONOMY

– its angle and “ the angle of the robot with respect to the stationary one (global frame). x,y and “ are
given by the camera.

The desired control law should converge to

(fl, –, —) = (0, 0, 0)

. It can be shown that the control law:

v = k
fl

· fl (6.4)

Ê = k
–

· – + k
—

· — (6.5)

will yield a closed-loop system which is asymptotically stable if k
fl

> 0 ; k
—

> 0 ; k
–

≠ k
fl

> 0, in
accordance to Lyapunov control theory [47], [48]. It is also known that:

v = „̇1
2 + „̇2

2 (6.6)

Ê = „̇1
a

≠ „̇2
a

(6.7)

with v,Ê the forwards, respectively rotational speed of the robot, „̇
i

the motor angular speed, r the
radius of the wheel, and a the axle length between wheels. Hence, by solving the above system, the
following relationship linking motor speed orientation is derived

„̇1 = v

r
≠ Êa

2r
= k

fl

· fl

r
≠ k

–

· – + k
—

· —a

2r
(6.8)

„̇2 = v

r
+ Êa

2r
= k

fl

· fl

r
+ k

–

· – + k
—

· —a

2r
(6.9)

with „̇1 and „2 the left and right motor angular speed respectively
This relationship guarantees convergence if the orientation information fl, –, — is available at all times.

This is however not the case, as the camera has only a limited angle of vision of ±30¶, and when large
maneuvers have to be done, the April Tag is easily lost.

6.3.2 Code

The main function implements 11 behaviors and calls 3 di�erent classes. Motor.cpp implements all
functions related to the motors and encoders, such as setSpeed(), stop(), travelDistance(), useFlippers().
Sensors.cpp regroups methods and other classes that read and are related to the sensors (accelerometer
and IR sensors). Control.cpp implements the Lyapunov control with all related details. All the code is
listed in the appendix.

The behaviour responsible for aligning to an April Tag (“followAprilTag”) combines both closed-loop

6.3. CONSTRUCTION ALGORITHM 51

control and open-loop control. Open-loop control (relying only on encoders) is necessary when relatively
large maneuvers are needed for alignment and the robot loses track of the April Tag. Closed-loop is
mostly used to finish the alignment with precision.

Stopping climbing at the right moment plays a key role in the overall performance of the construction.
As the robot does not know how many layers it has to climb, it is only relying on the accelerometer. The
robot stops climbing when an inflexion point of the inclination angle is reached (derivative changes sign
within a certain margin). After a short brake, and if it has not reached a horizontal position, the robot
resumes its climbing . This is implemented in two behaviors (“goUp1”, “goUp2).

As sensors may vary due to manufacturing reasons, and their placement may not be exactly the same
at each robot assembly, an individual IR calibration of each robot is necessary. The minimum and the
maximum value of each sensor when on black and white surface has to be replaced in the class constants.
The output of the IR sensors is then linearized between these limits. Other than this, the same code can
work without changes on all robots.

Chapter 7

Autonomy Assessment & Discussion

This chapter’s goal is to have a quantitative idea of the performance of the self-assembly algorithm.

The 6 phases of the algorithm are separately assessed. As soon as the robot attains its goal, it is
replaced by an empty one, the active robot is put back at the initial position, and the next assessment
phase is conducted. For cost reasons, only 2 active robots have been built, the other ones have the same
exterior shape but are empty inside. Additional weight is put to match the one of the active robot.

Each phase is assessed 7 times. Each trial is considered as a success only when the robot accomplishes
the whole phase, and stops at the right position (within given tolerances). For phase II, IV and V, this
means the alignment has to be within a 20cm radius from the ideal position, within a tolerance in the
angle of ±10¶. This can be easily verified, as the alignment is done using the camera. For position III
and VI, an error tolerance of 2 cm forwards and 1 cm laterally is accepted, as shown in 7.1

Figure 7.1: accepted error tolerance for completion of position III and VI ; dimensions of the robot are 183 x 180 x
73 mm

The following table lists the number of successes per phase, as well as the precision of the alignment
in case of success for phase II, IV, and V. The min, max and median error value is given for x, y direction
as well as for the angle. The error is computed relative to the ideal position, which is the one obtained

52

7.1. DISCUSSION 53

(a) phase II (b) phase III (c) phase IV

(d) phase V (e) phase VI (f) finish

Figure 7.2: after the end of each assessment, an empty robot is placed at the same position the active one stopped
previously

when manually putting the robot in the right place.

phase successes x (mm) y(mm) angle(¶)
min max median min max median min max median

II 4/7 1 7 5.5 -2.5 1.5 -1.5 -6 -1.5 -4.5
III 7/7
IV 4/7 -2 3 -0.7 -6 2.2 -0.2 -5 6 1.5
V 6/7 -3 4 1 -15.5 3 -11 -6.4 1.8 -2.4
VI 5/7

Table 7.1: assessment of the 6 algorithm phases ; when available, the misalignment error relative to the ideal position
is computed and the min, max and median values are listed

7.1 Discussion

When it comes to numbers of successful attempts, the robot performs the worst in phase II and IV. Failure
reasons are mostly due to the di�culty of detecting in time the edge of the robot beneath, or mistaking
while counting the number of passed robots.

The low-pass filter on the acceleration angle makes changes in angle occur with a certain delay, which
reinforces the problem. The angle is computed based on the orientation of exterior forces exerted on the
accelerometer. Therefore, less filtering would give too much importance to noise and spikes due to sudden
accelerations. The IR sensors in the front of the robot are also used to detect when the robot comes over a
gap. The sensors provide however with reliable results only within 2 cm, whereas when a robot is peaking
over the edge this distance to the ground is around 9 cm , which makes the whole process unreliable.

In case of success, it can be noticed however that the error and its variance are negligible compared
to the dimensions of the robot (180 x 183 mm). To give an idea of the scale, the results of phase II are

54 CHAPTER 7. AUTONOMY ASSESSMENT & DISCUSSION

plotted at real scale in figure 7.3. The error variance for phase II and IV represents less than 2 % of
it width. For these phases, a precise alignment within a 7mm radius of the ideal position is achieved.
The angle is always within ±6¶ from the ideal one.

In phase V, errors for the lateral displacement y are relatively higher, yet still negligible (<6.5%).
The align algorithm is slightly di�erent than in phase II and IV: in this case the robot does only line
following until the forwards distance x to the next tag is within a certain boundary. While line-following,
the displacement on y and the angle are neglected.

���PP

���PP

$SULO�7DJ

Figure 7.3: alignment errors (for position and angle) at real scale for phase IV ; a 25mm square is drown for
illustrative purposes; the red mark is the ideal position (when the robot is aligned manually)

From a hardware point of view, the combination between IR sensors, motor encodes and accelerometer
should provide enough sensitivity to allow reliable detection. Therefore, this failures can be avoided with
better edge detection functions, filtering, calibration or more accurate (IR) sensors.

By its design, the robot can be programmed such as to easily recover from a failure, return to the
starting position and reiterate the process. Slots have been left on the sides of the robot for additional
AprilTags, yet the algorithm implementation is left for future work.

From a cost perspective, the total of the mechanical and electrical parts rises to 297$ per robot
(including cables). Additionally, an estimated 60$ is spent on 3D printing. The overall cost can be
reduced by using a custom-designed PCB, custom made break-out boards for the sensors, and laser-
cutting instead of 3D printing when possible.

Chapter 8

Conclusion & Future Work

A robot capable of robust climbing has been designed and programmed to form a 2D pyramidal structure.
The algorithm has been designed in such a way as to allow formation of an arbitrary-sized structure.
Except independent calibration, no changes have to be done when using the algorithm on another robot.

Separate assessment of each of the construction phases has shown that if the robot does not fall o�
the structure, and if it is possible to maneuver, alignment within ±6¶ and a 7 mm radius of the ideal
position can be repeatably achieved.

“Climbot” is a novel design at the crossroads between modular and rough terrain exploration robots.
Without docking or aligning mechanisms, it o�ers the possibility of exploring self-assembly in a less rigid,
error-tolerant way. Moreover, by using its body as a controlled, smart and always available building block,
it minimizes its dependency on the environment.

For demonstration purposes, a 2D pyramid has been chosen as goal structure, yet the climbing as-
sessment of the robot shows that it is capable of climbing without getting stuck from all directions, thus
allowing future work around more complicated structures and formations.

Although the software is designed to build a pyramid, its modularity allows for most of the lower-level
function to be reused in other applications.

April Tags have been used for navigation and alignment, yet the on-board hardware and resources
allow for other image processing methods to be exploited.

All in all, this work has provided the optimization methods, mechanics, electronics and computational
power to create a research platform for collective structure building through self-assembly.

8.1 Future Work

The most obvious next step to do would be to implement a failure recovery algorithm, allowing the robot
to return to the right spot and to re-attempt climbing after falling.

The 2D pyramid demonstration does not exploit the full mechanical potential of the robot. More
complex shapes, like 3D pyramid, ramps or structures using environment obstacles could be considered
in future work. If desired, an alignment/docking, or even a transportation system (à la Kiva system !)
can comfortably be built on a deck.

55

56 CHAPTER 8. CONCLUSION & FUTURE WORK

More advanced planning, navigation and feature detection can always be implemented using the
Raspberry PI and its camera.

On the electrical perspective, a redesign of the electronics with a custom PCB would make the cost
of a single robot drop and facilitate assembly, thus allowing for the construction of a larger team. On
the mechanical perspective, a more rugged design would allow for better resistance to falls. Compliant
wheels or elastic elements could be used to damp such shocks.

Exploring issues when several robots are running concurrently is also an essential part of collective
robotic behaviour. Decision making over which robot to go first, where and when represents a interesting
challenge.

8.2 Acknowledgements

For helping me completing this work, I wish to thank Mike Rubenstein for his advice and tips. Special
thanks go to Kirstin Petersen, for the wonderful discussions and feedback around mechanics, and to Alex
Cornejo for sharing his knowledge on embedded systems, programming ... and Linux. I thank Michael S.
Kester for Saturday debugging and late-night chats.

Nothing can be achieved without friendship, so I also thank Sebastian Gabor, Marius Alexandrescu,
Tristan Vouga, David Formica and all my friends from Lausanne for reminding me of that despite the
distance.

Finally, I thank prof. Radhika Nagpal for her cheerful advising and prof. D. Floreano for enabling me
to do this exchange.

Bibliography

[1] Nathan J. Mlot, Craig A. Tovey, and David L. Hu. Fire ants self-assemble into waterproof rafts to
survive floods. Proceedings of the National Academy of Sciences, 2011.

[2] C. Anderson, G. Theraulaz, and J.-L. Deneubourg. Self-assemblages in insect societies. Insectes
Sociaux, 49(2):99–110, 2002.

[3] http://www.dailymail.co.uk/news/article-2603204/No-bridge-far-Army-ants-stranded-tree-build-bridge-climbing-other.

html. Accessed July, 2014.

[4] K. Gilpin and D. Rus. Modular robot systems. Robotics Automation Magazine, IEEE, 17(3):38–55,
Sept 2010.

[5] K. Gilpin, K. Kotay, and D. Rus. Miche: Modular shape formation by self-dissasembly. In Robotics
and Automation, 2007 IEEE International Conference on, pages 2241–2247, April 2007.

[6] K. Gilpin, K. Koyanagi, and D. Rus. Making self-disassembling objects with multiple components in
the robot pebbles system. In Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pages 3614–3621, May 2011.

[7] Byoung Kwon An. Em-cube: cube-shaped, self-reconfigurable robots sliding on structure surfaces. In
Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages 3149–3155,
May 2008.

[8] J.W. Romanishin, K. Gilpin, and D. Rus. M-blocks: Momentum-driven, magnetic modular robots. In
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages 4288–
4295, Nov 2013.

[9] Y. Suzuki, N. Inou, M. Koseki, and H. Kimura. Reconfigurable group robots adaptively transforming
a mechanical structure - extended criteria for load-adaptive transformations -. In Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 877–882, Sept 2008.

[10] J. Davey, Ngai Kwok, and M. Yim. Emulating self-reconfigurable robots - design of the smores
system. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on,
pages 4464–4469, Oct 2012.

[11] B. Salemi, M. Moll, and Wei-Min Shen. Superbot: A deployable, multi-functional, and modular
self-reconfigurable robotic system. In Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, pages 3636–3641, Oct 2006.

57

http://www.dailymail.co.uk/news/article-2603204/No-bridge-far-Army-ants-stranded-tree-build-bridge-climbing-other.html
http://www.dailymail.co.uk/news/article-2603204/No-bridge-far-Army-ants-stranded-tree-build-bridge-climbing-other.html

58 BIBLIOGRAPHY

[12] M. Yim, B. Shirmohammadi, J. Sastra, M. Park, M. Dugan, and C.J. Taylor. Towards robotic
self-reassembly after explosion. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ
International Conference on, pages 2767–2772, Oct 2007.

[13] Roland Siegwart, Pierre Lamon, Thomas Estier, Michel Lauria, and Ralph Piguet. Innovative design
for wheeled locomotion in rough terrain. Robotics and Autonomous Systems, 40:151 – 162, 2002.
Intelligent Autonomous Systems - {IAS} -6.

[14] Yugang Liu and Guangjun Liu. Track–stair interaction analysis and online tipover prediction for a
self-reconfigurable tracked mobile robot climbing stairs. Mechatronics, IEEE/ASME Transactions
on, 14(5):528–538, Oct 2009.

[15] Bin Li, Shugen Ma, Bin Li, Minghui Wang, and Yuechao Wang. A dynamic shape-shifting method
for a transformable tracked robot. In Robotics and Biomimetics (ROBIO), 2010 IEEE International
Conference on, pages 466–471, Dec 2010.

[16] Jinguo Liu, Yuechao Wang, Shugen Ma, and Bin Li. Analysis of stairs-climbing ability for a tracked
reconfigurable modular robot. In Safety, Security and Rescue Robotics, Workshop, 2005 IEEE In-
ternational, pages 36–41, June 2005.

[17] H. Benjamin Brown, J.M. Vande Weghe, C.A Bererton, and P.K. Khosla. Millibot trains for enhanced
mobility. Mechatronics, IEEE/ASME Transactions on, 7(4):452–461, Dec 2002.

[18] Zhiqing Li, Shugen Ma, Bin Li, Minghui Wang, and Yuechao Wang. Design and basic experiments
of a transformable wheel-track robot with self-adaptive mobile mechanism. In Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 1334–1339, Oct 2010.

[19] M. Freese, M. Kaelin, J.-M. Lehky, G. Caprari, T. Estier, and R. Siegwart. Lamalice: a nanorover
for planetary exploration. In Micromechatronics and Human Science, 1999. MHS ’99. Proceedings
of 1999 International Symposium on, pages 129–133, 1999.

[20] Xingguang Duan, Qiang Huang, Nasir Rahman, Junchen Li, and Jingtao Li. Mobit, a small wheel
- track - leg mobile robot. In Intelligent Control and Automation, 2006. WCICA 2006. The Sixth
World Congress on, volume 2, pages 9159–9163, 2006.

[21] http://www.icm.cc/. Accessed July, 2014.

[22] Yili Fu, Zhihai Li, Hejin Yang, and Shuguo Wang. Development of a wall climbing robot with
wheel-leg hybrid locomotion mechanism. In Robotics and Biomimetics, 2007. ROBIO 2007. IEEE
International Conference on, pages 1876–1881, Dec 2007.

[23] L. Briones, P. Bustamante, and M.A Serna. Wall-climbing robot for inspection in nuclear power
plants. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on,
pages 1409–1414 vol.2, May 1994.

[24] T. Miyake, H. Ishihara, and T. Tomino. Vacuum-based wet adhesion system for wall climbing robots
-lubricating action and seal action by the liquid-. In Robotics and Biomimetics, 2008. ROBIO 2008.
IEEE International Conference on, pages 1824–1829, Feb 2009.

http://www.icm.cc/

BIBLIOGRAPHY 59

[25] Che-Seung Cho, Jin-Dae Kim, Sung-Gun Lee, Sung Kyu Lee, Seung-Chul Han, and Byeong-Soo
Kim. A study on automated mobile painting robot with permanent magnet wheels for outer plate
of ship. In Robotics (ISR), 2013 44th International Symposium on, pages 1–4, Oct 2013.

[26] M. Wagner, Xiaoqi Chen, M. Nayyerloo, Wenhui Wang, and J.G. Chase. A novel wall climbing robot
based on bernoulli e�ect. In Mechtronic and Embedded Systems and Applications, 2008. MESA 2008.
IEEE/ASME International Conference on, pages 210–215, Oct 2008.

[27] F. et al. Rochat. Cy-mag3d: magnetic climbing inspection robot. Climbing and Walking Robots
(CLAWAR), 2011.

[28] F. et al. Rochat.

[29] Chang-Hwan Choi, Seung-Ho Jung, and Seung-Ho Kim. Feeder pipe inspection robot using an inch-
worm mechanism with pneumatic actuators. In Robotics and Biomimetics, 2004. ROBIO 2004. IEEE
International Conference on, pages 889–894, Aug 2004.

[30] F. Nigl, Shuguang Li, J.E. Blum, and H. Lipson. Structure-reconfiguring robots: Autonomous truss
reconfiguration and manipulation. Robotics Automation Magazine, IEEE, 20(3):60–71, Sept 2013.

[31] R. Saltaren, R. Aracil, O. Reinoso, and M.A Scarano. Climbing parallel robot: a computational and
experimental study of its performance around structural nodes. Robotics, IEEE Transactions on,
21(6):1056–1066, Dec 2005.

[32] M. Abderrahim, C. Balaguer, A Gimenez, J. M. Pastor, and V.M. Padron. Roma: a climbing robot
for inspection operations. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International
Conference on, volume 3, pages 2303–2308 vol.3, 1999.

[33] M. Tavakoli, A Marjovi, L. Marques, and AT. de Almeida. 3dclimber: A climbing robot for inspection
of 3d human made structures. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ
International Conference on, pages 4130–4135, Sept 2008.

[34] Tin Lun Lam and Yangsheng Xu. A flexible tree climbing robot: Treebot - design and implementation.
In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 5849–5854, May
2011.

[35] Mondada Francesco Bonani Michael Siegwart Roland Yves Scheidegger, Noemy. Bi-pedal robot for
rescue operations. International conference on climbing and walking robot (CLAWAR), 2006.

[36] H. Prahlad, R. Pelrine, S. Stanford, J. Marlow, and R. Kornbluh. Electroadhesive robots x2014;wall
climbing robots enabled by a novel, robust, and electrically controllable adhesion technology. In
Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages 3028–3033,
May 2008.

[37] Y. Yoshida and Shugen Ma. Design of a wall-climbing robot with passive suction cups. In Robotics
and Biomimetics (ROBIO), 2010 IEEE International Conference on, pages 1513–1518, Dec 2010.

60 BIBLIOGRAPHY

[38] Sangbae Kim, A.T. Asbeck, M.R. Cutkosky, and W.R. Provancher. Spinybotii: climbing hard walls
with compliant microspines. In Advanced Robotics, 2005. ICAR ’05. Proceedings., 12th International
Conference on, pages 601–606, July 2005.

[39]

[40] Ozgur Unver, A. Uneri, A. Aydemir, and M. Sitti. Geckobot: a gecko inspired climbing robot
using elastomer adhesives. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, pages 2329–2335, May 2006.

[41] E. Z. Moore, D. Campbell, F. Grimminger, and M. Buehler. Reliable stair climbing in the simple
hexapod ’rhex’. In Robotics and Automation, 2002. Proceedings. ICRA ’02. IEEE International
Conference on, volume 3, pages 2222–2227, 2002.

[42] Justin Werfel, Kirstin Petersen, and Radhika Nagpal. Designing collective behavior in a termite-
inspired robot construction team. Science, 343(6172):754–758, 2014.

[43] http://www.pololu.com/. Accessed July, 2014.

[44] Guangming Song, Hui Wang, Jun Zhang, and Tianhua Meng. Automatic docking system for recharg-
ing home surveillance robots. Consumer Electronics, IEEE Transactions on, 57(2):428–435, May
2011.

[45] E. Olson. Apriltag: A robust and flexible visual fiducial system. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, pages 3400–3407, May 2011.

[46] Roland Siegwart and Illah R. Nourbakhsh. Introduction to Autonomous Mobile Robots. Bradford
Company, Scituate, MA, USA, 2004.

[47] A Astolfi. Exponential stabilization of a car-like vehicle. In Robotics and Automation, 1995. Pro-
ceedings., 1995 IEEE International Conference on, volume 2, pages 1391–1396 vol.2, May 1995.

[48] A Tayebi and A Rachid. Discontinuous control for exponential stabilization of wheeled mobile robots.
In Intelligent Robots and Systems ’96, IROS 96, Proceedings of the 1996 IEEE/RSJ International
Conference on, volume 1, pages 60–65 vol.1, Nov 1996.

http://www.pololu.com/

Appendix A

Code Details

Listing A.1: ClimBot.ino

include <stdio .h>
include <string .h>
include <SoftwareSerial .h>
include <QTRSensors .h>
include <Wire.h>
include <LSM303 .h>

include " Sensors .h"
include " Control .h"
include " Motors .h"

bool DEBUG = 1;
bool FILTER =0;
bool CLIMB =1, STAY =0;

const int pinTx = 7, pinRx =8;
const int fwds =1, bwds = -1;

const int baseLength = 3;

const int cw = 1, ccw = -1;
const int accelX = A4 , accelY = A5 , accelZ = 11;
// const int numIrSensors = 4; // it’s a global variable so Serial .h sees it
const int speed = 220;
const int speedBack = 220;
const int climbSpeed = 190;
const int followLineSpeed = 240; // robot #1
// const int followLineSpeed = 230; // robot #2
const int robotLength = 1400; // in nb of encoder tours

enum behaviour {search , AprilTag , pos , peak , peakBack , goDown , adjust ,stop ,
goUp ,goUpInter , alignAprilGround , alignAprilTop };

behaviour myBehaviour = AprilTag ;

61

62 APPENDIX A. CODE DETAILS

// max camera sight
// -24, 45 recorder for a_max b_max , however
float x_max = 235, y_max = 39, a_max = -10/180*PI , b_max = 44/180* PI;

// conditions for convergent control
const int minRhoDeploy = 73;
const int minRhoAlign = 53;
const int rhoPerim = 260; // at 300 roll is not valid anymore

const int rollThresh = 9;

const int window = 5;
const int thetaHor = 6; // calibrate by putting robot on another one
const int thetaTol = 4; // tolerence on horizontality

typedef struct position {
float x;
float y;
float z;
float roll;
float pitch;
float yaw;

} position ;
MotorsClass myMotors ;
ControlClass myControl ;
LSM303 myLSM;
SensorsClass IRsensors ;

position myPos;

char inData [100];
int motorSpeed [2];

// int flag =1; // lyap controller
bool flag =0; // line following
bool lostTrace =0;
bool oLoop =1;

int climbCount = 0;
int posCount = 0;
int turnCount = 0;
float rollPrev = 90;

// accelerom
float theta =0, thetaPrev = 0;
float thetaFilt [window] ={}; //C++ init to 0
double accelMag =0;
int i=0; // lousy filter counter

63

int sensors [numIrSensors];
int sLeft , sRight ;
float rho;

SoftwareSerial mySerial (pinRx , pinTx); // RX , TX

inline int Sign(float f) {
return ((f >0) - (f <0)) ;
}

float getDistance () {
float x = sqrt(myPos.x* myPos.x + myPos.y*myPos .y);
return x;

}

bool getSerial ()
{

int bufferSize ;
char junk;

if ((bufferSize = Serial . available ())== sizeof (position))
{

for (int j=0; j< sizeof (position);j++)
inData [j] = Serial .read ();

myPos.x = (*(position *) inData).x;
myPos.y = (*(position *) inData).y;
myPos.z = (*(position *) inData).z;
myPos.roll = (*(position *) inData).roll;
myPos. pitch = (*(position *) inData).pitch ;
myPos.yaw = (*(position *) inData).yaw;

return 1;
}

else if (bufferSize > sizeof (position))
// just empty buffer and ignore the data

while(Serial . available ())
junk = Serial .read ();

return 0;
}

// follows IR sensors until loss of balance or stripe is reached
void followLine (int direction)
{

if (theta <-4 || theta >20)
{

myMotors . stop_motors ();
// mySerial . println (" stopped bc of theta ");

}

else if(sensors [0] < lineRange /2 || sensors [2] < lineRange /2)

64 APPENDIX A. CODE DETAILS

{
// if(sensors [0] > 0 & sensors [2] > 0)

// myMotors . set_speed (230 - sensors [2], 230- sensors [0]);
myMotors . set_speed (Sign(direction)*(followLineSpeed - (

lineRange - sensors [2])),
Sign(direction)*(

followLineSpeed -
(lineRange -

sensors [0])));

// mySerial . println (" following line right now ");
}
// forwards if all B
else

myMotors . set_speed (Sign(direction)*speed , Sign(direction)*speed);
}

void followLineBwds ()
{

int x,y;
if (theta <0 || theta >20)

myMotors . stop_motors ();

else if (sensors [3] > lineRange /2 || sensors [4] > lineRange /2)
{

x = - 235 + sensors [4];
y = - 235 + sensors [3];
myMotors . set_speed (x, y);
// mySerial . println (x); mySerial . println (y);

}

else

myMotors . set_speed (-speed , -speed);
}

void posFct ()
{

// if I see an AprilTag I go for it
if(getSerial ())
{

myMotors . stop_motors ();
delay (100);
myMotors . retractFlip ();
delay (300);
myBehaviour = alignAprilTop ;

}

else if(sensors [0] < whiteThresh & sensors [1] < whiteThresh & sensors [2] <
whiteThresh)

// || sensors [0] > blackThresh & sensors [1] > blackThresh &

65

sensors [2] > blackThresh) // not sure about this
{

myBehaviour = peak;
// be sure that you go past the white stripe
// mySerial . println (" transition ");
myMotors . moveEnc (fwds ,70, speed); // instead of 180
myMotors . stop_motors ();
delay (100);
posCount ++;

}
else

// go to next white line
followLine (fwds);

}

void peakFct ()
{

// comment
// go forward until accelerom changes or another WHITE spot is detected
if (theta < thetaHor - 7)
{

//I am on a cliff
myBehaviour = peakBack ;
myMotors . moveEnc (bwds ,800 ,200);
// delay (1500) ;
myMotors . stop_motors ();

}
else if (sensors [0] < whiteThresh || sensors [1] < whiteThresh || sensors [2] <

whiteThresh & (theta > thetaHor))
//I am on another robot
myBehaviour =pos;

else if(getSerial ())
{

myMotors . stop_motors ();
delay (100);
myMotors . retractFlip ();
delay (300);
myBehaviour = alignAprilTop ;

}
else

{
// mySerial . println (" trying to open loop forward ");
myMotors . set_speed (speed , speed);

}
}

void peakBackFct ()
{

// if only one robot under me , go down , else adjust in the middle of the 2

66 APPENDIX A. CODE DETAILS

precedents ones
if(posCount ==1)
{

myBehaviour = goDown ;
myMotors . moveEnc (bwds , robotLength *2, speedBack);
myMotors . stop_motors ();
delay (600);

}
else if (posCount >1 & theta < 10 & theta > 3)
{

// myMotors . moveEnc (bwds ,800 , speed);
// myMotors . stop_motors ();
myBehaviour = adjust ;

// mySerial . println (" switched to adjust ");
}
else

{
myMotors . stop_motors ();
mySerial . println ("I am in peakBack mode without having counted any

white stripe ");
}

if(sensors [0] < whiteThresh & sensors [1] < whiteThresh & sensors [2] <
whiteThresh)

{
// you skipped this line but it’s not too late!
myMotors . moveEnc (fwds ,300);
myBehaviour = adjust ;

}

}

void goUpFct ()
{

// if there is too large charge in angle , wait
if (thetaPrev - theta > 4) // instead of theta < 10
{

myMotors . stop_motors ();
// allow enough time for accelerometer to calm down (filter !)
delay (500);
myBehaviour = goUpInter ;

}
else

myMotors . moveEnc (fwds ,90 ,175); // need some serious momentum here //
instead of 175

}

void goUpInterFct ()
{

67

// after detecting a chaning in the angle , now I wait to see if gravity
// pulls me back flat
if(theta >thetaHor + 4)
{

delay (300);
climbCount ++;
if (climbCount ==7)

myBehaviour = goUp;
}
else

{
myBehaviour =pos;
// myMotors . retractFlip ();
delay (1500) ;
myMotors . moveEnc (bwds ,180 ,225); // with flippers retracted was 400 !
delay (1000) ;

}
}

void goDownFct ()
{

if(theta > 10)
{

// if still inclined , go down
myMotors . moveEnc (bwds , 250 , speedBack);
// followLineBwds ();

}
else

{
// just go back enough to see the AprilTag
myMotors . moveEnc (bwds , robotLength /3, speed);
myMotors . stop_motors ();
// followLineBwds ();
// TOBE replaced !
myMotors . retractFlip ();
delay (1500) ;
myBehaviour = alignAprilGround ;
posCount =0;

}
}

void adjustFct ()
{

if (theta > 10)
{

// position counting is wrong
posCount =1;
myBehaviour = goDown ;

}
else if(sensors [0] > lineRange /2 & sensors [1] > lineRange /2 & sensors [2] >

lineRange /2 & theta < 10 & theta > 0)

68 APPENDIX A. CODE DETAILS

{
// adjustment manoeuver ;
// myMotors . moveEnc (fwds ,150) ;
myMotors . stop_motors ();
// mySerial . println ("I am adjusted ");
myMotors . retractFlip ();
delay (1500) ;
myBehaviour =stop;

}
else

followLineBwds ();
}

void searchFct ()
{

if(flag)
{

myMotors . set_speed (-190 , -190 , 1000);
myBehaviour = AprilTag ;

}
else

{
if(turnCount < 8)
{

myMotors .turn(cw ,speed ,300);
turnCount ++ ;

}
else

{
myMotors .turn(ccw ,speed ,1800) ;
turnCount =0;
myMotors . set_speed (190 ,190 ,1000);

}
}
myMotors . stop_motors ();
delay (600);

}

void alignAprilTopFct ()
{

int flag= getSerial ();
float rho = getDistance ();

if(flag & myPos.x != 0.0 & myPos .y != 0.0 & myPos.z != 0.0
& myPos.roll != 0.0 & myPos .pitch != 0.0 & myPos.yaw != 0.0)
{

if(rho > minRhoDeploy)
followLine (fwds);
// myMotors . retractFlip ();

else

69

myBehaviour = stop;
}

}

void followAprilTag (bool climb)
{

// acquire data
flag = getSerial ();

myControl .lyap(myPos .x, myPos.y, myPos.roll , motorSpeed);
myControl . normalize (motorSpeed);

sLeft = motorSpeed [0];
sRight = motorSpeed [1];

rho= getDistance ();

// there has been a detection and this detection is valid
if (flag & myPos.x != 0.0 & myPos.y != 0.0 & myPos .z != 0.0
& myPos.roll != 0.0 & myPos .pitch != 0.0 & myPos.yaw != 0.0)
{

if (rho < minRhoDeploy & abs(myPos.roll) < rollThresh & climb)
{

myMotors . deployFlip ();

myMotors . set_speed (160 ,160 ,1200);
myBehaviour = goUp;

myMotors . stop_motors ();
delay (200); // wait a sec for IR

}
else if (rho < minRhoAlign & abs(myPos.roll) < rollThresh & ! climb)

myBehaviour = stop;

else if (rho < minRhoDeploy +10 & abs(myPos.roll) > rollThresh)
{

// if too close and rolll to big , maneuver to reduce it
// using encoders
myMotors . moveEnc (bwds ,1000) ;
myMotors . turnEnc (-Sign(myPos .roll) ,400 ,190);
myMotors . moveEnc (fwds ,600);
myMotors . turnEnc (Sign(myPos.roll) ,600 ,190);

}
else if (abs(rollPrev)+2 < abs(myPos.roll) & myPos.roll > 30 & oLoop)
{

// if change in roll angle too sudden , trajectory needs to
overshoot ,

// camera will be lost -> openLoop

myMotors . turnEnc (ccw ,400 ,190);

70 APPENDIX A. CODE DETAILS

myMotors . moveEnc (fwds ,600);
myMotors . stop_motors ();
myMotors . turnEnc (cw ,600 ,190);
oLoop =0;

}
else

{
// follow Lyapunov
myMotors . set_speed (sLeft , sRight ,50);
oLoop =1;

}
rollPrev = myPos.roll;

}
myMotors . stop_motors ();
// delay important , else getSerial jams (is this really the reason ?)
delay (100);

}

void setup ()
{

Serial . begin (9600) ;
// caution with intereferances between Hard - and Soft - Serials
mySerial . begin (9600) ; // using PGM03A for debugging
myMotors .init ();
Wire.begin ();
myLSM.init ();
myLSM. enableDefault ();

}

void loop ()
{

IRsensors . readRaw ();
IRsensors .read(sensors , FILTER ,DEBUG);
myLSM.read ();

// TODO: fix the issue with the accelerom angle
accelMag = sqrt (((float) myLSM.a.x /1000) *((float) myLSM.a.x /1000) +

((float) myLSM.a.y /1000) *((float) myLSM.a.y
/1000) +

((float) myLSM.a.z /1000) *((float) myLSM.a.z
/1000));

if (myLSM.a.x < 0)
theta = - (180 - acos ((float) myLSM.a.z /1000/ accelMag)*180/ PI);

else

theta = 180- acos ((float) myLSM.a.z /1000/ accelMag)*180/ PI ;

// filter acceleration angle
thetaFilt [i]= theta;

71

i++;
if (i== window)

i=0;
theta = 0; // use same variable for filter result
for(int j=0;j <window ;j++)

theta += thetaFilt [j];
theta /= window ;

if(DEBUG)
{

mySerial . print(" theta : "); mySerial . println (theta);
}

switch (myBehaviour)
{

case search :
searchFct ();
break;

case AprilTag :
followAprilTag (CLIMB);
break;

case goUp:
goUpFct ();
break;

case goUpInter :
goUpInterFct ();
break;

case pos:
posFct ();
break;

case peak:
peakFct ();
break;

case peakBack :
peakBackFct ();
break;

case adjust :
adjustFct ();
break;

case goDown :
goDownFct ();
break;

72 APPENDIX A. CODE DETAILS

case alignAprilGround :
// if not flat yet , go flat first
if (theta > thetaHor +4)

myMotors . moveEnc (bwds , 30);
else

followAprilTag (STAY);

break;

case alignAprilTop :
alignAprilTopFct ();
break;

case stop:
myMotors . stop_motors ();

default :

break;
}
flag =0;
thetaPrev = theta;

// if robot is lifted = reset pos
if (theta < -30)
{

myBehaviour = AprilTag ;
posCount =0;

}
if(DEBUG){

mySerial . print(myBehaviour);
mySerial . print(" with a positionCount ");
mySerial . println (posCount);
mySerial . println ();

}
}

73

Listing A.2: Motors.h

// Motors .h

/*
298:1 Pololu Micro Motors , with optical encoders on extended shaft (resolution : 6)
double threaded worm gear with 30 teeth = > 4470:1 ratio
should take 11175 motor turns to turn flippers 180 deg (theoretically !)
*/

ifndef _MOTORS_h
define _MOTORS_h

#if defined (ARDUINO) && ARDUINO >= 100
include " Arduino .h"

#else

include " WProgram .h"
endif

// proper way to do it : use private variables and use initializer list
// pins should come as arguments of the init () function

const int r_motor_n = 13; // PWM control Right Motor -
const int r_motor_p = 9; // PWM control Right Motor +
const int l_motor_p = 10; // PWM control Left Motor +
const int l_motor_n = 11; // PWM control Left Motor -

const int arm_motor_p = 6; // PWM flipper +
const int arm_motor_n = 5; // PWM flipper -

const int encPinFlip = A5;
const int encPinRear = A4;
// motor encoder limit values : vary only slightly from one motor to another
const int encoderMax = 845;
const int encoderMin = 47;

const int nbToursFlip = 13400; // corresponding to 180 deg turn of flippers

const int maxMotorSpeed = 255; // in fact corresponds to minimum
const int Impetus = 50; // delay in ms // behavviour with 10 ms

const int flipperSpeed = 100;

class MotorsClass
{

protected :

int leftSpeed ;
int rightSpeed ;

74 APPENDIX A. CODE DETAILS

unsigned long encoder ;

int comp;

int limitSpeed (int); // protects from overflow variables
int readEncoder (const int); // simple ADC conversion
void turnUntil (const long , const int);

public :
void init (); // this is not a constructor
void set_speed (int , int , int dt =10);
void turn(int , int speed = 200, int dt =100);
void deployFlip ();
void retractFlip ();
void stop_motors ();

// move fwds/bwds and turn cw/ccw using encoder (on one wheel only)
void moveEnc (int dir , long tours , int speed =200);
void turnEnc (int dir , long tours , int speed =200);

};

// extern MotorsClass Motors ;

endif

75

Listing A.3: Motors.cpp

//
//
//

include " Motors .h"

void MotorsClass :: init ()
{

pinMode (r_motor_n , OUTPUT); // Set control pins to be outputs
pinMode (r_motor_p , OUTPUT);
pinMode (l_motor_p , OUTPUT);
pinMode (l_motor_n , OUTPUT);
digitalWrite (r_motor_n , LOW); // set both motors off for start -up
digitalWrite (r_motor_p , LOW);
digitalWrite (l_motor_p , LOW);
digitalWrite (l_motor_n , LOW);

}

int MotorsClass :: limitSpeed (int x)
{

if (x > maxMotorSpeed)
return maxMotorSpeed ;

if (x < -maxMotorSpeed)
return -maxMotorSpeed ;

return x;
}

void MotorsClass :: set_speed (int left , int right , int dt)
{

rightSpeed = limitSpeed (right);
leftSpeed = limitSpeed (left);

if(rightSpeed <0)
{

digitalWrite (r_motor_p , HIGH); // Set motor direction , 1 low , 2 high
analogWrite (r_motor_n , abs(rightSpeed));

}
else if (rightSpeed >0)
{

digitalWrite (r_motor_n , HIGH); // Set motor direction , 1 low , 2 high
analogWrite (r_motor_p , rightSpeed);

}
else

{
digitalWrite (r_motor_p , LOW); // Set motor direction , 1 low , 2 high
digitalWrite (r_motor_n , LOW);

76 APPENDIX A. CODE DETAILS

}

if(leftSpeed < 0)
{

digitalWrite (l_motor_p , HIGH); // Set motor direction , 1 low , 2 high
analogWrite (l_motor_n , abs(leftSpeed));

}
else if (leftSpeed >0)
{

digitalWrite (l_motor_n , HIGH); // Set motor direction , 1 low , 2 high
analogWrite (l_motor_p , leftSpeed);

}
else

{
digitalWrite (l_motor_n , LOW); // Set motor direction , 1 low , 2 high
digitalWrite (l_motor_p , LOW);

}

delay(dt);
}

void MotorsClass :: stop_motors ()
{

digitalWrite (r_motor_n , LOW); // Set motor direction , 1 low , 2 high
digitalWrite (r_motor_p , LOW);
digitalWrite (l_motor_p , LOW);
digitalWrite (l_motor_n , LOW);
digitalWrite (arm_motor_p , LOW);
digitalWrite (arm_motor_n , LOW);
leftSpeed =0;
rightSpeed =0;

}

void MotorsClass :: deployFlip ()
{

digitalWrite (arm_motor_n , HIGH); // Set motor direction , 1 low , 2 high
analogWrite (arm_motor_p , flipperSpeed);

turnUntil (nbToursFlip , encPinFlip);
stop_motors ();

}

void MotorsClass :: retractFlip ()
{

digitalWrite (arm_motor_p , HIGH); // Set motor direction , 1 low , 2 high
analogWrite (arm_motor_n , flipperSpeed);

turnUntil (nbToursFlip , encPinFlip);
stop_motors ();

}

77

int MotorsClass :: readEncoder (const int encPin)
{

int x = analogRead (encPin);

if (x> (encoderMin + encoderMax)/2)
return 1 ;

else

return 0;

}

void MotorsClass :: turnUntil (const long nbTurns , const int pin)
{

// measure every change of of ADC
encoder =0;
int x, xp =0;

while(encoder <nbTurns)
{

x = readEncoder (pin);
if (x != xp)
encoder ++;

xp = x;
}

}

void MotorsClass :: turn(int direction , int speed , int dt)
{

// turn CW
if (direction > 0)

set_speed (speed ,-speed ,dt);
// CCW
else

set_speed (-speed ,speed ,dt);

}

void MotorsClass :: moveEnc (int direction , long nbTours , int speed)
{

// forwards
if(direction > 0)
{

set_speed (speed ,speed);
turnUntil (nbTours , A4);

}
else

{
set_speed (-speed ,-speed);
turnUntil (nbTours , encPinRear);

78 APPENDIX A. CODE DETAILS

}

}

void MotorsClass :: turnEnc (int direction , long nbTours , int speed)
{

// cw
if(direction > 0)
{

set_speed (speed ,-speed);
turnUntil (nbTours , A4);

}
// ccw
else

{
set_speed (-speed ,speed);
turnUntil (nbTours , encPinRear);

}
}

79

Listing A.4: Sensors.h

// Sensors .h

ifndef _SENSORS_h
define _SENSORS_h

#if defined (ARDUINO) && ARDUINO >= 100
include " Arduino .h"

#else

include " WProgram .h"
endif

include <SoftwareSerial .h>

//IR sensor constants
const int IR1 = A0 , IR2 = A1 , IR3 = A2 , IR4 = A11 , IR5= A6;
const int numIrSensors = 5;

// for each robot , change these constants based on IR results
const int minIR[numIrSensors] = {605 , 569, 640, 330, 565}; // robot #1
const int maxIR[numIrSensors] = {789 ,787 ,813 , 629 ,792};
const int lineRange =70 ; // desired output value range (between 0 and 100)
const int nbSamples = 4; // window length for filtering
const int whiteThresh = lineRange /3;
const int blackThresh = lineRange /1.2;

class SensorsClass
{

protected :
// int storage [numIrSensors][nbSamples]

public :
// void calibrateIR ();
void readRaw (); // raw data (as seen by the ADC)
void read(int tab[numIrSensors],bool filter , bool debug =0);

};
extern SoftwareSerial mySerial ;

/* Sensor order :

------------------ front ------------------

------------0--------1----------2----------

----------------4---------3---------------

--------------flippers ----------------------
*/

80 APPENDIX A. CODE DETAILS

endif

81

Listing A.5: Sensors.cpp

//
//
//

include " Sensors .h"

// void SensorsClass :: calibrate

// reads at 10 kHz

// temp use for calibration
void SensorsClass :: readRaw ()
{

mySerial . print(analogRead (IR1)); mySerial .print ("\t");
mySerial . print(analogRead (IR2)); mySerial .print ("\t");
mySerial . print(analogRead (IR3)); mySerial .print ("\t");
mySerial . print(analogRead (IR4)); mySerial .print ("\t");
mySerial . print(analogRead (IR5)); mySerial .print ("\t");
mySerial . println ();

}

void SensorsClass :: read(int ptr [], bool filter , bool debug)
{

// always better to avoid float -> use signed long to avoid overflow
// reinitialize tab each time
int storage [numIrSensors]= {0};

if (filter)
{

for(int j=0; j < nbSamples ; j++)
{

storage [0] += ((signed long) analogRead (IR1)- minIR [0])*
lineRange /(maxIR [0] -minIR [0]);

storage [1] += ((signed long) analogRead (IR2)- minIR [1])*
lineRange /(maxIR [1] -minIR [1]);

storage [2] += ((signed long) analogRead (IR3)- minIR [2])*
lineRange /(maxIR [2] -minIR [2]);

storage [3] += ((signed long) analogRead (IR4)- minIR [3])*
lineRange /(maxIR [3] -minIR [3]);

storage [4] += ((signed long) analogRead (IR5)- minIR [4])*
lineRange /(maxIR [4] -minIR [4]);

delay (500);
}

for (int i=0; i< numIrSensors ; i++)
ptr[i] = storage [i]/ nbSamples ;

}

82 APPENDIX A. CODE DETAILS

else

{
ptr [0] = ((signed long) analogRead (IR1)- minIR [0])* lineRange /(maxIR [0]

-minIR [0]);
ptr [1] = ((signed long) analogRead (IR2)- minIR [1])* lineRange /(maxIR [1]

-minIR [1]);
ptr [2] = ((signed long) analogRead (IR3)- minIR [2])* lineRange /(maxIR [2]

-minIR [2]);
ptr [3] = ((signed long) analogRead (IR4)- minIR [3])* lineRange /(maxIR [3]

-minIR [3]);
ptr [4] = ((signed long) analogRead (IR5)- minIR [4])* lineRange /(maxIR [4]

-minIR [4]);
}

if (debug)
{

mySerial . print(ptr [0]); mySerial .print("\t");
mySerial . print(ptr [1]); mySerial .print("\t");
mySerial . print(ptr [2]); mySerial .print("\t");
mySerial . print(ptr [3]); mySerial .print("\t");
mySerial . print(ptr [4]); mySerial .print("\t");

mySerial . println ();
}

}

// SensorsClass Sensors ;
// SoftwareSerial mySerial ;

83

Listing A.6: Control.h

// Control .h

ifndef _CONTROL_h
define _CONTROL_h

#if defined (ARDUINO) && ARDUINO >= 100
include " Arduino .h"

#else

include " WProgram .h"
endif

// control variables constants and variables
const float axleLength = 145;
const float radius = 72;

const float k_rho = 700; // must be > 0
const float k_a= 6000; // must be > k_rho
const float k_b = -6000 ; // k_b < 0
// min abs distance (mm) before starting to climb

// scale the outputs within min and max
const int minSpeed = 200;
const int maxSpeed = 50;

class ControlClass
{

protected :
float rho;
float alpha;
float beta;

float v; // depends on rho
float omg; // depends on alpha , beta

float upBound ;

public :
void lyap(float , float , float , int tab [2], bool debug = 0); // laypunov

controller
// normalization done realtive to the maximum area from which a Tag is still

visible
void normalize (int tab [2], bool debug =0);

};

extern ControlClass Control ;

endif

84 APPENDIX A. CODE DETAILS

Listing A.7: Control.cpp

include " Control .h"

// computes a lyapunov controller from aprilTag information
//x, y in mm , roll in degrees
void ControlClass :: lyap(float x, float y, float roll , int tab [], bool debug)
{

rho = sqrt(x*x +y*y);
// alpha is chosen such that it is positive when y negative
alpha = -atan(y/x); // is the same as atan2 if x> 0
beta = -alpha -roll /180* PI;// beta is replaced by beta -90 for new arrival

position

v = k_rho*rho;
omg = k_a*alpha + k_b*beta;

tab [0] = v/ radius - omg* axleLength /(2* radius);
tab [1] =v/ radius + omg* axleLength /(2* radius);

if(debug)
{

Serial . print(" alpha "); Serial . print(alpha *180/ PI);
Serial . print(" beta "); Serial . print(beta *180/ PI);
Serial . print(" v "); Serial . print(v);
Serial . print(" omg "); Serial . println (omg);
Serial . print(" sLeft "); Serial . println (tab [0]);
Serial . print(" sRight "); Serial . println (tab [1]);
// Serial . print (" upBound "); Serial . println (upBound);

}

}

void ControlClass :: normalize (int tab [2], bool debug)
{

// corresponds to max perimeter
int tempTab [2];
lyap (410 , 200, -10, tempTab);
upBound = max(tempTab [0], tempTab [1]);// ouputs 8200

if(debug)
{

Serial . print(" b4 normalizationLeft "); Serial . println (tab [0]);
Serial . print(" b4 normalization Right "); Serial . println (tab [1]);

}

if (tab [0] >0)
tab [0] = (1- tab [0]/ upBound)*(minSpeed - maxSpeed) + maxSpeed ;

85

else if (tab [0] <0)
tab [0] = -(1+ tab [0]/ upBound)*(minSpeed - maxSpeed) - maxSpeed ;

if (tab [1] >0)
tab [1] = (1- tab [1]/ upBound)*(minSpeed -maxSpeed) + maxSpeed ;

else if (tab [1] < 0)
tab [1] = -(1+ tab [1]/ upBound)*(minSpeed -maxSpeed) - maxSpeed ;

if(debug)
{

Serial . print(" after normalizationLeft "); Serial . println (tab [0]);
Serial . print(" after normalization Right "); Serial . println (tab [1]);

}
}
ControlClass Control ;

List of Figures

1.1 (a)weaver ant tower [3]; (b) fire ant raft (pushed into the water with a twig) [1] ; (c) army
ant bridge[2]; (d) weaver ant chain [3]; (e) Japanese honey bee oven around a hornet [2] . 5

1.2 modular robots (from left to right) : (a) lattice-like robot MICHE [5], (b) M Blocks [8] ,(c)
two SMORES modules [10], (d) a complex assembly of SuperBot modules [11] 7

1.3 climbing robots for rough terrain (from left to right): (a) SHRIMP, (b) reconfigurable
tank-tread robot, (c) LaMalice, (d) Mobit . 7

1.4 ICM wind turbine inspection robot using vacuum to climb on brick, metal, or concrete [21] 8
1.5 electroadhesive pads implemented on a 1DoF robot . 9
1.6 robot with passive suction cups . 10
1.7 di�erent ways of gripping and attaching : (a) bipedal robot with 2 grippers [35], (b) RiSe

robot [39], (c) Treebot [34] , (e) GeckoBot [40] . 10

2.1 overview of some of the climbing categories (rectangle) and some of the common-used me-
chanics for climbing (circles); the chosen path is highlighted in orange; literature references
are added between brackets . 12

2.2 first selection among mechanical designs; the marks are given from 0 to 5, where 5 solves
the topic in the most satisfying way; the chosen design is highlighted in red 13

2.3 flipper-based design possibilities; the chosen solution is highlighted in red 15

3.1 simplified robot model; two conditions have to be respected in order to climb: the CoM
has to reach the edge of the obstacle and the robot has to be in static equilibrium at all time 17

3.2 . 19
3.3 illustration of function (3.14) : necessary friction to climb with a given aspect ratio; all

points in shaded region are valid . 20
3.4 variation of the minimum coe�cient of friction necessary to climb with respect to the aspect

ratio k = height

length

. 20
3.5 optimal design line: for each o�set of the CoM the last point of the minimum friction line

is taken (left) and represented on a separate curve (right) 21
3.6 two possible structure configurations: either the robot can return to horizontal position

as an intermediate step of the ascension, or it continues the ascension with the same or
smaller orientation angle; the climbing robot is represented in red 21

86

LIST OF FIGURES 87

3.7 simplification of climbing on several layers of robots; as in a standard inclined plane prob-
lem, the friction coe�cient has to be larger than the tangent of the inclination angle for
the robot to hold still . 22

3.8 additional static condition on µ: figure 3.5a is represented with the additional condition
(3.16) in dashed-dotted lines; the green dashed line represents the reunion between the two
conditions; a robot can climb on another and on several layers of robots if its design is
situated above the green dashed line . 23

3.10 example of robot with flippers . 23

3.9 performance comparison between robots with di�erent flipper lengths; green line represents
flippers of the same size as the robot, which makes the new total length twice the initial
one, whereas blue line represents no flippers at all; . 24

4.2 Tamyia track set from [43] . 25

4.1 commented overview of the robot assembly . 26

4.3 with a mass of 0.5 kg, a radius of 4.5 cm and a friction of 1.8 27

4.4 298:1 HP Micro Metal Gearmotor with extended shaft for encoders http://www.pololu.

com/product/2208 . 28

4.5 forces exerted in an extreme situation: the full arrows represent the e�orts on the robot
body (excluding the flipper) . 28

4.6 robot chassis with main characteristics . 29

4.7 the worm drive support - illustrated in red . 30

4.8 robot deck with longitudinal and transverse withe stripe for line following and edge detection 31

5.1 1st model built with a prudent aspect ratio of 0.37; only the minimum electronics for remote
controlling are present; the flushed frontal design of the chassis does not allow it to tackle
obstacles diagonally . 32

5.2 illustration of climbing on an obstacle more than twice the height of the robot 33

5.3 second embodiment with an aspect ratio of k = 0.7 . 33

5.4 situation of the 2 designs with respect to the theoretical predictions; 1st design is repre-
sented with open and closed flippers, while the second only with open flippers (for visibility
reasons) . 34

5.5 ground clearance and side stuck position: most of the robot’s weight is supported by red
point (I), which means there is not enough wheight on (II) to ensure traction 35

5.6 di�erent climbing configurations: with flippers backwards (I) and flippers forwards (Ia); 35

5.7 results in climbing from di�erent angle in di�erent configurations; 10 trials have been
conducted for each angle (spanning from 0 to 170¶); successes are indicated in blue, failures
in red , and slides in orange; the backwards configuration is kept as definitive 36

5.8 phase (II) is meant to assess how often the robot would get stuck on the side (as sketched in
5.10 and phase (III) is meant to assess the performance of climbing on a 2-layered structure 37

http://www.pololu.com/product/2208
http://www.pololu.com/product/2208

88 LIST OF FIGURES

5.9 results of phase II (climbing from a shifted position) and of phase III (climbing on 2 robot
layers); in phase II, “di�cult” means the robot gets temporarily stuck in a position similar
to 5.10, and in phase III “misalignment” occurs when the robot falls before the second layer
is reached . 38

5.10 sliding on the edge of another robot can occur after climbing; although the robot is not
stuck, the climbing has to be repeated, because it is not considered a stable position for
further construction . 38

6.1 some possibilities of self-assembled structures; the 2D tower is chosen 39
6.2 a Raspberry PI camera is used for navigation and alignment 40
6.3 bottom and top view of the robot; when on another robot, the robot mostly relies on its IR

sensors; the longitudinal white pattern guides the robot and the transverse one indicates
an imminent edge . 41

6.4 overall schematic of the robot’s electrical components; black arrows are inputs and red are
outputs; the communication protocol is indicated in italic 42

6.5 overview and placement of the sensors in the robot; the RPI board and batteries are omitted
for visibility purposes . 43

6.6 example of April Tag detection: for visualization purposes, a rectangle is drawn around
the tag when detected; orientation information is then extracted using homography . . . 43

6.7 position of the camera and of the April Tag on a robot . 44
6.8 possible orders for a 2D tower with 6 robots: the first 3 steps are highlighted in red for

better visibility . 45
6.9 illustration of an arbitrary-sized structure formation algorithm for a 2D pyramid; the first 6

steps are shown; generally, the robot has to climb and count the number of robots beneath;
from an algorithmic perspective, phase II is the same as phase IV, and III the same as VI;
in phase V counting is not necessary as an April Tag is detected directly after climbing;
this algorithm can be reiterated for an arbitrary-sized structure and stays the same for
each robot . 46

6.10 recording of phase II; the exact same strategy is iterated in phase IV 47
6.11 recording of phase III; the exact same strategy is reiterated on phase VI 47
6.12 recording of phase V . 47
6.13 top-to-bottom code implementation scheme, from high-level behaviors to hardware inter-

facing . 48
6.14 alignment with non-holonomic robots: fl, –, and — have to be controlled to 0; x ,y and “

are extracted using the camera, April Tags and homography 49

7.1 accepted error tolerance for completion of position III and VI ; dimensions of the robot are
183 x 180 x 73 mm . 52

7.2 after the end of each assessment, an empty robot is placed at the same position the active
one stopped previously . 53

LIST OF FIGURES 89

7.3 alignment errors (for position and angle) at real scale for phase IV ; a 25mm square is
drown for illustrative purposes; the red mark is the ideal position (when the robot is
aligned manually) . 54

List of Tables

4.1 motor specifications . 28

5.1 robot specifications . 34

7.1 assessment of the 6 algorithm phases ; when available, the misalignment error relative to
the ideal position is computed and the min, max and median values are listed 53

90

	Introduction
	Background and Motivation
	Litterature Review
	Modular or Self-reconfiguring Robots
	Obstacle climbing robots
	Pure vertical climbing robots
	Adhesion and attachment mechanisms

	Goals

	Mechanical Solutions for Climbing
	Preliminary Reduction of Design Options
	Further Reduction of the Design Options

	Robot Model and Geometrical Optimization
	Simple Robot Model
	Case I - Climbing On One Robot
	Case II - climbing on a structure

	Flipper Robot Model

	Mechanical Design
	Tracks
	Worm drive
	Motors
	Wheels
	Worm Gear

	Chassis
	Worm Drive Support
	Wheels
	Deck

	Embodiment and Climbing Assessment
	Climbing Assessment
	Phase I
	Phase II & III

	Towards Full Autonomy
	Choosing a Structure
	Building a 2D Tower
	Challenges
	Solutions & Sensors
	Electronics - Overview
	Solving the Alignment Problem

	Construction Algorithm
	Implementation
	Code

	Autonomy Assessment & Discussion
	Discussion

	Conclusion & Future Work
	Future Work
	Acknowledgements

	Code Details
	List of Figures
	List of Tables

