
Programmable Self-Assembly Using Biologically-Inspired
Multiagent Control

Radhika Nagpal
Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Boston, MA 02139, USA

radhi@ai.mit.edu

ABSTRACT
This paper presents a programming language that specifies a
robust process for shape formation on a sheet of identically-
programmed agents, by combining local organization primi-
tives from epithelial cell morphogenesis and Drosophila cell
differentiation with combination rules from geometry. This
work represents a significantly different approach to the de-
sign of self-organizing systems: the desired global shape is
specified using an abstract geometry-based language, and
the agent program is directly compiled from the global spec-
ification. The resulting self-assembly process is extremely
reliable in the face of random agent distributions, random
agent death and varying agent numbers, without relying on
global coordinates or centralized control.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Distributed Artificial Intelligence, Multiagent systems, Lan-
guages and structures; D.1.3 [Software]: Programming Tech-
niques—Concurrent Programming

General Terms
Design, Languages, Algorithms, Reliability

Keywords
Morphogenesis, Amorphous Computing, Collective Behav-
ior, Smart Matter, Pattern Formation, Paper-Folding

1. INTRODUCTION
This paper presents a programming language approach to

self-assembling complex structures from locally-interacting
agents, using techniques inspired by developmental biology.
We present a programming language for instructing a sheet
of locally-interacting, identically-programmed agents to as-
semble themselves into a predetermined global shape. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02, July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

language specifies a global shape as a folding construction on
a continuous sheet, using a set of axioms from paper-folding
mathematics [6]. The global specification is subsequently
compiled into local programs that are run on the individ-
ual agents. The agent programs use robust local organiza-
tion primitives inspired by studies of cell differentiation and
morphogenesis in multicellular organisms [10, 17]. With this
language, a wide variety of folded shapes and 2D patterns
can be specified at an abstract level, compiled into agent
programs, and then synthesized using purely local interac-
tions between identically-programmed agents.

This system has several unique features. In contrast to
approaches based on cellular automata or evolution, the pro-
gram executed by an agent is automatically compiled from
the global shape description. We provide a small set of
biologically-inspired primitives that form the basis of agent
programs: gradients, neighborhood query, polarity inver-
sion, cell-to-cell contact and flexible folding. The resulting
process is extremely reliable in the face of random agent
distributions, random agent death and varying agent num-
bers and does not rely on global coordinates or centralized
control. We show that an average local neighborhood of 15
agents is sufficient to reliably self-assemble complex shapes
and geometric patterns on randomly distributed agents. We
also show that the derived agent program uses only a small
amount of local state and the majority of the code is con-
served across all global shapes.

This research is motivated by emerging technologies, such
as MEMs1 devices, that are making it possible to bulk-
manufacture millions of tiny computing elements integrated
with sensors and actuators and embed these into materi-
als and structures. Already many novel applications that
integrate computation into the environment are being en-
visioned and built: smart materials such as sensor covered
beams that actively resist buckling[2], modular self recon-
figuring robots[5], self-assembling nanostructures[7]. Mean-
while, new directions in biocomputing may even make it
possible to harness the many sensors and actuators in cells
and create programmable tissue substrates [16].

These novel computational environments pose many new
challenges, that are not met by distributed and parallel com-
puting. These applications will require coherent and robust
behavior from the interactions of multitudes of agents and
their interactions with the environment. Individual agents
will have limited resources and reliability and the intercon-

1Micro-electronic Mechanical Devices. Integrates mechani-
cal sensors/actuators with silicon based integrated circuits.

nects between agents will be local, irregular and possibly
time-varying. These new environments fundamentally stress
the limits of our current engineering and programming tech-
niques, which rely heavily on precision parts and strongly
regulated environments to achieve fault-tolerance.

Approaches within the applications community have been
dominated by a centralized, hierarchical mind-set. Within
the MEMs community, programming strategies have for the
most part been centralized applications of traditional con-
trol theory; the few decentralized approaches assume ac-
cess to global knowledge of the system and tend to focus
on hierarchical control[2]. Centralized hierarchies are not
scalable and can be quite brittle, catastrophically failing
if a high-level node fails. In the reconfigurable robotics
community, the focus has been on centralized and heuristic
searches, which quickly become intractable for large num-
bers of modules[14]. There is a strong tendency to depend
on centralized information, such as global clocks or external
beacons for triangulating position, which puts severe limita-
tions on the possible applications and environments and ex-
poses easily attacked points of failure. These programming
strategies put pressure on system designers to build com-
plex, precise (and thus expensive) agents rather than cheap,
mass-produced, unreliable computing agents that one can
conceive of just throwing at a problem.

Currently, however, few alternatives exist. Approaches
based on cellular automata and artificial life research have
been difficult to generalize; local rules are constructed em-
pirically without providing a framework for constructing lo-
cal rules to obtain any desired goal. One notable exception
is Mataric’s work on a language for synthesizing complex
behavior in colonies of ant-like robots, by combining a set of
basis behaviors[11]. However, interactions between the basis
behaviors can be quite complex and for the most part com-
plex behavior is generated by using evolutionary or learning
approaches[11]. Evolutionary and genetic approaches are
more general but the local rules are evolved without any
understanding of how or why they work. This makes the
correctness and robustness of the evolved system difficult to
verify and analyze [4].

By contrast, biological systems achieve incredible robust-
ness in the face of constantly dying and replacing parts. The
precision and reliability of embryogenesis in the face of un-
reliable cells, variations in cell numbers, and changes in the
environment, is enough to make any engineer green with
envy. Currently, developmental biology remains untapped
as a source for algorithms, in spite of its incredible robust-
ness and complexity.

We propose to use morphogenesis and developmental bi-
ology as a source of mechanisms and general principles for
organizing complex behavior. Our approach is to formalize
these general principles as programming languages — with
explicit primitives, means of combination, and means of ab-
straction — thus providing a framework for the design and
analysis of self-organizing systems. This paper presents an
example of applying this approach to self-assembly and is
part of larger vision called Amorphous Computing to ex-
plore new programming models for collective behavior[1].
Recently, work on a modular self-reconfigurable robot has
applied techniques similar to those developed in our research
group for self-assembling branching structures[5, 3]. We be-
lieve that these new programming models will impact the
design of and approach to reconfigurable robotics, self as-

(a)

apical

basal

cell

(b)

(c)

local
neighborhood

irregularly
shaped cells

r

Figure 1: (a) A programmable material (b) Dynamic
simulation of a sheet folding (c) Simulation model
for a programmable sheet.

sembly, and smart-matter applications, and also influence
our engineering principles for robust design.

The remainder of the paper is organized as follows: the
first three sections present the programmable sheet model,
the global shape language and the global to local compila-
tion process. The next sections present several simulation
examples along with an analysis of the resource consumption
and robustness of the system.

2. A PROGRAMMABLE MATERIAL
Imagine a flexible substrate, consisting of millions of tiny

interwoven programmable fibers, that can be programmed
to assume a different global shapes. One could design com-
plex static and dynamic structures from a single substrate.
For example a programmable assembly line that moves ob-
jects by producing ripples; manufacturing by programming;
reconfigurable structures for deploying in space, that fold
compactly for storage but then unfold on site.

Morphogenesis (creation of form) in developmental biol-
ogy can provide insights for creating programmable mate-
rials that can change shape. Epithelial cells in particular
generate a wide variety of structures: skin, capillaries, and
embryonic structures (gut, neural tube), through the co-
ordinated effect of local shape changes in individual cells.
Odell et al. have provided a mechanical model for epithelial
cells[13]; the cell can actively change its shape by contract-
ing fibers in its apical (top) and basal (bottom) membranes.
The fibers are modeled by controlled damped springs. Odell
et al. used a ring of such cells to model epithelial cell folding
during neurulation and gastrulation in embryos.

Our model for a flexible programmable material is in-
spired by epithelial cell sheets — the programmable ma-
terial is composed of a single layer sheet of flexible agents
that create complex structures through the coordination of
local shape changes (figure 1(a)). The actuation model is
based on the Odell’s epithelial cell model. A single agent
has limited impact, but when many agents along a line co-
ordinate the folding of their apical or basal fibers, the sheet
is folded. Such a sheet can form a wide variety of structures
by folding, as shown in figure 1(b). Numerical simulations

of such structures however quickly become computationally
intractable as the number of agents increases.

For the purpose of exploring and simulating shapes formed
by folding, a we use a simpler and more general model of a
programmable sheet. The sheet consists of a single layer of
thousands of randomly and densely distributed irregularly-
shaped agents. Figure 1(c) shows a simulation image of such
a sheet; the simulation images always show the apical (top)
surface of the sheet. The agents are represented by dots
but are assumed to fill the space. The simulator computes
the result of the actuation of many agents and performs
the configuration change. This process is described in more
detail in section 4.2.

2.0.1 Agent Model
The computational model for the agent is also influenced

by biological cells. All agents have the identical program,
but execute it autonomously based on local communication
and internal state. Communication is strictly local: an agent
can communicate only with a small local neighborhood of
agents within a distance r, or through surface contact with
other agents as a result of folding. The sheet starts out with
a few simple initial conditions and apical/basal polarity, but
apart from that the agents have no knowledge of global posi-
tion or interconnect topology. There are no external beacons
for triangulating position. Individual agents have limited re-
sources and instead of unique identifiers they have random
number generators to break symmetry. The motivation for
these characteristics comes from the envisioned applications.

3. GLOBAL SHAPE SPECIFICATION
Given a flexible sheet which can fold, we need a lan-

guage for specifying the desired global shape. This can be
viewed as similar to folding a sheet of paper. Paper-folding
(origami) provides a natural, although somewhat unusual,
way for describing shapes that can formed by folding a sheet.
In the past decade there has been renewed interest in the
mathematics of paper-folding. Huzita has presented a set of
six axioms for constructing shapes using straight line folds
that describe a large class of folded shapes [6]. The first four
are the most commonly used:

1. Given two points p1 and p2, fold a line between them.

2. Given two points p1 and p2, fold p1 onto p2 (the per-
pendicular bisector of the the line p1p2).

3. Given two lines L1 and L2, fold L1 onto L2 (the bi-
sector of the angle between L1 and L2).

4. Given p1 and L1, fold L1 onto itself through p1 (the
line perpendicular to L1 through p1).

These paper-folding axioms have considerable descriptive
power. Huzita has proven that four axioms can construct all
plane Euclidean constructions[6]. Lang[9] has shown that
tree-based folded shapes can be automatically generated by
computer and methods exist for constructing scaled polyg-
onal shapes. There is a large practical literature of shapes
that can be constructed using these techniques. As the rela-
tionship between paper-folding constructions and geometry
is explored further, the results will directly impact this work.

We have developed a global shape specification language
based on Huzita’s axioms and paper-folding practice, called

;; OSL Cup program

;;---------------------

(define d1 (axiom2 c3 c1))

(define front (create-region c3 d1))

(define back (create-region c1 d1))

(execute-fold d1 apical landmark=c3)

(define d2 (axiom3 e23 d1))

(define p1 (intersect d2 e34))

(define d3 (axiom2 c2 p1))

(execute-fold d3 apical landmark=c2)

(define p2 (intersect d3 e23))

(define d4 (axiom2 c4 p2))

(execute-fold d4 apical landmark=c4)

(define l1 (axiom1 p1 p2))

(within-region front

(execute-fold l1 apical landmark=c3))

(within-region back

(execute-fold l1 basal landmark=c1))

Figure 2: Folding diagram for a cup, and the
corresponding OSL Program

the Origami Shape Language (OSL). The language is de-
scribed in detail in [12]; here we illustrate most aspects of it
through a simple but functional example, a cup.

The folding diagram for the cup and the corresponding
OSL program are shown in figure 2. The basic elements
of the language are points, lines and regions. Initially, the
sheet starts out with four corner points (c1-c4) and four
edge lines (e12-e41) and an apical-basal polarity. The ax-
ioms generate new lines from existing points and lines, while
new points are created by intersecting lines. For example,
the first cup operation constructs the diagonal d1 from the
points c1 and c2 by using axiom 2. The diagonal divides the
sheet into two regions, front and back; a region is defined
by a line that divides the sheet into two and a point on one
side of the line. We can restrict later operations to specific
regions. Not all lines are folded, for example the line d2 is
an intermediate step used only to create point p1. Therefore
the fold execution is separated from the axioms. In origami
diagrams there is an implicit top surface facing the viewer.
The top surface is made explicit in OSL by having the sheet
maintain an apical (top) and basal (bottom) surface. There
are two types of folds, apical and basal. Given a crease, a

fold that puts the apical surface on the inside is an apical
fold and vice versa. After a fold is executed, the apical sur-
face must be re-determined. The landmark in execute-fold
specifies the side of the crease that moves in the diagram
and hence the side that will reverse its apical/basal polar-
ity. The choice of landmarks is important. In the case of the
cup, the choice of landmarks ensures that both lateral flaps
of the cup end up on the same side. The fold is always a flat
fold, and hence the structure created by OSL are flat but
layered structure. Folds are assumed to go through all lay-
ers of the paper, unless they are restricted to a region. For
example, the line l1, created using axiom 1, goes through
both layers of the sheet. However we want to fold the front
layer towards us and back layer away from us. We use the
regions to accomplish this; an apical fold is executed in the
front region and a basal fold in the back region. The same
idea can be used for folding a subset of the layers. In the end
if we open the sheet we get a crease pattern that tells us the
location of all the lines which can be used for verification.

Rather than specify a global shape directly, this language
specifies a process for folding the shape. However this spec-
ification is abstract — the process is on a continuous sheet
with no notion of agents or self-assembly.

4. GLOBAL TO LOCAL COMPILATION
The agent program is directly compiled from the global

shape specification. We provide a small set of primitives for
organization at the local level and a means for combining
these primitives in robust and predictable ways to create the
agent program for a given shape. Hence the relationship be-
tween local behavior and global behavior is well understood.
However, like any other emergent system, the eventual shape
emerges as a result of the local interactions between the
agents. The compilation process confers many advantages:
we can use theoretical results from paper-folding to reason
about the kinds of shapes can and cannot be self-assembled
and we can use the decomposition into primitives and means
of combination to analyze the robustness of the system.

This section describes the compilation process in three
steps: First, we present a small set of biologically-inspired
primitives that form the basis of the multiagent control.
Then we show how each of the operations in OSL, such as
the axioms, can be implemented by simple agent programs.
Finally we show how a shape specification is compiled into
a agent program.

4.1 Biologically-inspired Primitives
The agent programs are based on five primitives: gra-

dients, neighborhood query, polarity inversion, cell-to-cell
contact and flexible folding. The primitives are simple ways
in which a agent interacts with its local neighborhood and
uses its sensing/actuation capabilities. These primitives are
inspired by biologists’ understanding of how pattern and
morphology appear in the development of embryos such as
the Drosophila and sea urchin [10, 17].

Gradients: Gradients are analogous to chemical gradi-
ents secreted by biological cells; the concentration provides
an estimate of distance from the source of the chemical.
Gradients are believed to play an important role in provid-
ing position information in morphogenesis[17]. For instance,
in the Drosophila, two different proteins are emitted from
opposite ends of the embryo and are used by cells to de-
termine whether they lie in the head, thorax or abdominal

regions[10].
An agent creates a gradient by sending a message to its

local neighborhood with the gradient name and a value of
zero. The neighboring agents forward the message to their
neighbors with the value incremented by one and so on, un-
til the gradient has propagated over the entire sheet. Each
agent stores the minimum value it has heard for a particular
gradient name, thus the gradient value increases away from
the source. Because agents communicate with only neigh-
boring agents within a small radius, the gradient provides
an estimate of distance from the source. Gradients are quite
general and similar primitives have been used in other con-
texts [5, 15, 3]2. The source of a gradient could be a group of
agents, in which case the gradient value reflects the shortest
distance to any of the sources. Thus, the shape and posi-
tions of the sources affects the spatial pattern of gradient
values. For example if a single cell emits a gradient then
the value increases as one moves radially away from the cell
but if a line of cells emit a gradient then the gradient value
increases as one moves perpendicularly away from the line.

Neighborhood Query: This primitive allows an agent
to query its local neighborhood and collect information about
their state. For example an agent may collect neighboring
values of a gradient for comparison. This primitive is from
cellular automata[15]. An agent can also broadcast a mes-
sage to its entire local neighborhood.

Polarity Inversion: As part of the initial conditions of
the sheet, each agent has an internal apical-basal polarity.
Originally all agents have the same polarity, but an agent
can choose to invert its internal apical-basal polarity.

Cell-to-cell Contact: This primitive allows communi-
cation through physical contact. When agents come into
direct physical contact with each others apical or basal sur-
face, as a result of changes in the shape of the sheet, they
become part of each others local communication neighbor-
hood. When agents cease to be in contact, then that com-
munication bond is broken. An agent does not distinguish
between the original neighborhood and the contact neigh-
borhood.

Cell-to-cell contact is the main way in which changes to
the environment (sheet) affect the behavior of the agents. It
allows multiple layers of the sheet to act as a single fused
layer. For example, cell-to-cell contact indirectly affects the
way gradients propagate by changing the local neighbor-
hoods. Gradients seep through regions of the sheet that are
in contact with each other as if the sheet were a single layer.

Flexible Folding: This primitive comes from the actua-
tion model of the agent. An agent can contract its apical or
basal fibers in order to affect the shape of the sheet. In the
simulation environment, the requests from the agents to con-
tract apical/basal surfaces are collected and then the simu-
lator globally computes the result of those actuations. The
simulator also recalculates the cell-to-cell contact neighbor-
hoods as a result of the change in sheet configuration. We
make this computation feasible by restricting the allowed
folds to straight flat folds.

2The gradient primitive is different from reaction-diffusion
and ant pheromone-like primitives that depend on more
strictly modeling diffusion, chemical reactions and/or evap-
oration.

p1

p2
p1

p2

p1

L1

L1

L2 p2

p1

p1

p2

growing
point

L1

L2

p1

L1
L1

Figure 3: Huzita’s axioms 1-4 and their implementation by the agents

4.2 Composition into Local Rules
This section describes how each of the global OSL oper-

ations can be implemented as a simple agent program (also
called a local rule) using the set of primitives. An OSL point
is represented by a group of agents approximately the size
of a local neighborhood. A OSL line is represented by a
line of agents of width approximately the diameter of the
local neighborhood. All agents in a line or point group are
equal i.e. no one agent is in charge of the group. Each
agent has a boolean variable in its internal state for each
distinct point/line; the variable is true if the agent is part of
the point/line. Initially the sheet starts out with four dis-
tinct lines and points (edges and corners), so all agents have
boolean state variables e12, e23, e34, e41, c1, c2, c3

c4. If an agent is part of the edge e12 then the correspond-
ing state variable is true. The initial conditions are very
simple; agents do not know where they are within an edge
and the remainder of the sheet is homogeneous, just like a
blank sheet of paper.

The axioms use gradients to determine which agents be-
long to the crease. The axioms make use of the fact that
gradients provide a distance estimate as well as reflect the
shape of the source. Figure 3 shows agents forming lines
that implement Huzita’s axioms 1–4.

Axiom 1 uses tropism to create a crease from point p1 to
p2. Tropism implies the ability to sense the direction of a
gradient by comparing neighboring values. The agents in p2
create a gradient and the agents in p1 grow a crease towards
p2 by following decreasing gradient values. This technique
was introduced by Coore for creating line patterns based
on tropism[3]. Axiom 2 creates a crease line such that any
point on the crease is equidistant from points p1 and p2.
Therefore if p1 and p2 generate two different gradients, each
agent can compare if the gradient levels are approximately
equal to determine if it is in the crease line. Axiom 3 uses
the same local rules as axiom 2. The difference is that the
gradients are produced by lines rather than points, and thus
the gradient values increase as one moves perpendicular to
the input line. Axiom 4 reuses the axiom 1 local rules to
grow a crease from point p1 to the crease l1.

The local rules for an axiom can be expressed as a simple
agent program. In Figure 4 the local rule for axiom 2 is
expressed as a procedure. The local rule returns a true or
false value depending on whether the agent belongs to the
new point or crease and this true/false value can be stored
in some new local state variable. Each axiom attempts to
produce creases that are approximately twice the width of
the local communication distance r.

A key piece to making the axioms work is the effect of
cell-to-cell on the behavior of gradients on a folded sheet.
Because multiple layers of the sheet can act as a single layer,
the gradient values reflect the Euclidean distance from the
source rather than the distance along the plane of the sheet.

(define (axiom2-rule p1 p2 g1 g2)

; arguments are boolean state p1 p2

; and gradient names g1 g2

(if p1 (create-gradient g1))

(if p2 (create-gradient g2))

(wait-for-gradients g1 g2)

; generates a crease of width apprx 2r

(if (< (abs (- g1 g2)) 1)

#t

#f))

Figure 4: Local Rule for Axiom 2

This allows all of the previously defined axiom local rules to
work without modification on folded sheets, and the crease
lines go through all layers of the sheet as expected.

Regions allow the user to restrict the context in which a
local rule applies. A region is created by using bounded
gradients, which implies that certain types of cells will not
forward the gradient message; the intuition being that cer-
tain cells can act as barriers to particular gradients. The
agents in the point p1 create a bounded gradient that can
not pass through the agents in the dividing line l1. The
agents that receive the bounded gradient become part of
the region. Hence we can use gradients to mark regions.

The last important global operation is execute-fold. In
order to execute a fold along a line l1, all the agents in l1
make actuation requests to the simulator. The simulator ap-
proximates the configuration by computing the best-fit line
of the set of actuating agents. The simulator then deter-
mines whether the best-fit line is a justified approximation
for a given set of agents — if the line is discontinuous or sig-
nificantly different from the expected width, then the simu-
lator returns a failure notice. Thus we restrict the simulator
to perform only straight line folds (rather than arbitrary de-
formations of the sheet) which makes the computation fea-
sible. The simulator recalculates the contact neighbors are
recalculated every time the sheet is folded. A second piece to
execute-fold is re-determining the apical surface. The land-
mark agents create a bounded gradient thus marking the
region on one side of the crease. After the fold, these agents
reverse their polarity. Thus the sheet constantly maintains
an apical and basal surface. This idea is inspired by tissue
induction, where one region of cells can induce its polarity
on another region.

4.3 Compilation of the Agent Program
Compiling an OSL program involves creating local boolean

state variables for each distinct point and line and then
translating each OSL operation into a call to the correspond-
ing agent procedure with the appropriate arguments. The
compiler assigns different gradient names for each call.

For example, the OSL code

(define d2 (axiom3 e23 d1))

(define d3 (axiom2 c2 p1))

becomes the agent program

(define d2 #f) ; corresponding local state

(define d3 #f)

(set! d2 (axiom3-rule e23 d1 g1 g2))

(set! d3 (axiom2-rule c2 p1 g3 g4))

The agent program mirrors the original OSL cup program.
However note that at the OSL level there is no notion of
gradients, or even agents. The compilation process from
global to local is easy to understand. However the agent
programs generated are no different from any other emergent
systems — the eventual shape “emerges” as a result of local
interactions between the agents and the initial conditions.

4.4 Resource Consumption
Although the process is communication intensive, the re-

source requirements per agent are surprisingly small — a
small local state and mostly fixed code space. Each dis-
tinct point, line or region contributes a boolean to the lo-
cal state. Many gradients are created, however their use is
short-lived. Each operation uses no more than 3 distinct gra-
dients, therefore an agent does not need to store more than 6
distinct gradients at any time (the previous set of gradients
is kept around just in case neighbors are still finishing pre-
vious operation). The storage per gradient is proportional
to the diameter of the sheet. Another interesting property
is that the majority of the agent code is conserved across
all shapes. The fixed code implements the primitives (like
gradients) and the OSL operations. This is fixed across all
shapes. Only a small part of the code corresponds to the
actual shape sequence. This has an interesting analogy to
biology: DNA is highly conserved across all living things.

5. EXAMPLES
The examples presented were generated by specifying the

folding construction using OSL, compiling the OSL program
to generate the agent program and then executing the agent
program on the simulated programmable sheet. The initial
conditions are always the same: boundary conditions and
apical/basal polarity. Figure 5 shows a simulation of the
cup folding on a sheet with 4000 agents with an average
neighborhood size of 15 agents, using the program in figure
2. Figure 6 shows the sheet folding itself into an envelope.

The OSL language can also be used to create patterns.
Based on Huzita’s result,s we can theoretically self-assemble
any plane Euclidean construction, i.e. any pattern that can
be described using straight edge and compass construction.
Practically there are resolution limitations based on how
many agents there are. However the important point is that
this is gives us a systematic way of self-assembling a very
large class of patterns. An example of such a class is CMOS
logic patterns. The figure 7 shows a caricature of an inverter
chain pattern, generated by subdividing the sheet into re-
gions and then laying down the inverter pattern within each
segment. The OSL program allows procedures that capture
repeated sequences, therefore the inverter chain program can
be written in a modular fashion.

6. ROBUSTNESS
The shape formations could fail in many possible ways:

agents forming an incorrect or crooked crease line, no agents
at the intersection of two lines, errors in gradients and cell-
to-cell contact, leaking regions etc. However such failures
are extremely rare and the simulations presented are very
reliable. The multiagent control does not rely on regular
agent placement, global coordinates, or centralized control.
Instead, robustness is achieved by depending on large and
dense agent populations, using average behavior rather than
individual behavior and trading off precision for reliability.
In [12] we provide an extensive analysis of the behavior of
gradients and axioms and their tolerance to random distri-
butions and cell death. Here we present a few examples of
the results.

The reliability depends critically on density. The proba-
bility that an agent has no neighbors or that a large region
has no agents, should be extremely low. In addition, the
accuracy of the gradient distance estimate also depends on
the density. We can leverage results in the field of packet
radio networks to determine the desired density. Kleinrock
and Silvester presented theoretical results showing that the
expected error in the distance estimate provided by a gra-
dient rapidly decreases as the density is increased, until
the expected neighborhood size is around 15-20 neighbors
where it levels off[8]. We can further increase the accuracy
of the distance estimate if each agent computes an average
of its neighbors (smoothed value). Our experimental results
closely match the theoretical results as shown in graph 8(a)
and show that good accuracy can be obtained with a rea-
sonable neighborhood size.

We can also analyze the behavior of the composition of
gradients. In axiom 2 when two gradients are combined,
their errors create an interference pattern. As a result the
combined error varies depending on the position with re-
spect to the sources. Axiom 2 in fact creates a crease in the
region with the least error; the result is that patterns such as
the inverter chain (figure 7) are geomtrically accurate even
though the agents are distributed randomly. We provide a
formula for the uncertainty in the position of a agent and use
this to show that the accuracy of axiom 2 decreases as the
ratio between the crease length and the distance between
the input points increases. Graph 8(b) shows experimen-
tal results that support this conclusion; in fact the width of
the line widens as the crease:input ratio is increased. Simi-
larly one can analyze the behavior of the remaining axioms.
These analyses also impact other systems that are built on
top of gradient like primitives.

The self-assembly process can tolerate a small amount of
random agent death. All of the local primitives are designed
with a certain amount of redundancy; the behavior of a line
or point is the average of many equal agents. The random
distribution also plays a role: even if a small fraction of
agents randomly die, the result is still a random distribution.
Therefore the algorithms designed for random distributions
have some amount of inherent tolerance to random agent
death. Gradients are extremely robust to random death and
there is no fixed hierarchy or centralized control that can be
easily disrupted. Points and lines are the only sections that
have long term roles and the sheet formation is vulnerable
to large regional failures that kill entire points or lines. The
reliability will be affected if enough agents die such that the
expected local neighborhood goes significantly below 15.

Figure 5: Simulation images from folding a cup

Figure 6: Folding an envelope structure

Figure 7: Differentiation into an inverter chain pattern

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50

er
ro

r
(in

 u
ni

ts
 o

f r
)

nlocal

Absolute Error in Distance Estimates by Gradients

Integral Distance Error (average)
Integral Distance Error (stddev)

Smoothed Distance Error (average)
Smoothed Distance Error (stddev)

(b)

0

1

2

3

4

5

6

7

8

00.1250.250.3750.50.6250.750.8751

di
st

an
ce

 (
un

its
 o

f r
)

(distance between sources / crease length)

Perpendicular Distance from Crease for Axiom 2

AVERAGE
MAX

STDDEV

Figure 8: Affect of the local neighborhood size on
gradient and axiom 2 accuracy

The agent program is also tolerant to varying agent num-
bers. Using our results on the accuracy of the axioms, one
can determine lower bounds on the number of agents needed
to form a given structure. However, the agent program
works without modification for larger numbers of agents.
Not only is the local program independent of the total num-
ber of agents, the shape/pattern will automatically scale as
the size of the sheet increases.

7. CONCLUSIONS
This work represents a different approach to engineering

self-organizing systems. Rather than trying to map a de-
sired goal directly to the behavior of individual agents, the
problem is broken up into two pieces: a) how to achieve
the goal globally b) how to map the construction steps to
local rules. We take advantage of current understanding in
other disciplines of how to decompose a problem. This ap-
proach suggests that exploring new global paradigms is at
least as important as experimenting with local rules. Future
work will focus on extending this approach to volumetric 3D
shapes and investigating the formation of shape by replica-
tion (growth), mobility, and deletion (agent death). In the
long run we hope to apply these frameworks to achieving
coherent behavior from aggregates of genetically-modified
biological cells [16].

8. REFERENCES
[1] H. Abelson, D. Allen, D. Coore, C. Hanson,

G. Homsy, T. Knight, R. Nagpal, E. Rauch,
G. Sussman, and R. Weiss. Amorphous computing.
Communications of the ACM, 43(5), May 2000.

[2] A. Berlin. Towards Intelligent Structures: Active
Control of Buckling. PhD thesis, MIT, Dept of
Electrical Eng. and Computer Science, May 1994.

[3] D. Coore. Botanical Computing: A Developmental
Approach to Generating Interconnect Topologies on an
Amorphous Computer. PhD thesis, MIT, Dept of
Electrical Eng. and Computer Science, Feb. 1999.

[4] S. Forrest and M. Mitchell. What makes a problem
hard for a genetic algorithm? Machine Learning,
13:285–319, 1993.

[5] Hogg, Bojinov, and Casal. Multiagent control of
self-reconfigurable robots. In 4th International
Conference on Multi-Agent Systems, July 2000.

[6] H. Huzita and B. Scimemi. The algebra of
paper-folding. In First International Meeting of
Origami Science and Technology, Ferrara, Italy, 1989.

[7] R. Jackman, S. Brittain, A. Adams, M. Prentiss, and
G. Whitesides. Design and fabrication of topologically
complex, three-dimensional microstructures. Science,
280:2089–2091, 1998.

[8] L. Kleinrock and J. Silvester. Optimum tranmission
radii for packet radio networks or why six is a magic
number. In Proc. Natnl. Telecomm. Conf., pages
4.3.1–4.3.5, 1978.

[9] R. J. Lang. A computational algorithm for origami
design. In Annual Symposium on Computational
Geometry, Philadelphia, PA, 1996.

[10] P. A. Lawrence. The Making of a Fly: the Genetics of
Animal Design. Blackwell Science, Oxford, U.K., 1992.

[11] M. Mataric. Issues and approaches in the design of
collective autonomous agents. Robotics and
Autonomous Systems, 16((2-4)):321–331, Dec. 1995.

[12] R. Nagpal. Programmable Self-Assembly: Constructing
Global Shape using Biologically-inspired Local
Interactions and Origami Mathematics. PhD thesis,
MIT, Dept of Electrical Engineering and Computer
Science, June 2001.

[13] G. Odell, G. Oster, P. Alberch, and B. Burnside. The
mechanical basis of morphogenesis: 1. epithelial
folding and invagination. Developmental Biology,
85:446–462, 1981.

[14] Pamecha, Ebert-Uphoff, and Chirikjian. Useful
metrics for modular robot planning. IEEE Trans. on
Robotics and Automation, 13(4), Aug. 1997.

[15] M. Resnick. Turtles, Termites and Traffic Jams. MIT
Press, Cambridge, MA, 1994.

[16] R. Weiss, G. Homsy, and T. Knight. Toward in vivo
digital circuits. In Dimacs Workshop on Evolution as
Computation, Jan. 1999.

[17] L. Wolpert. Positional information and the spatial
pattern of cellular differentiation. Journal of
Theoretical Biology, 25:1–47, 1969.

