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Abstract. The schooling behavior of fish is hypothesized to confer many survival bene-
fits, including foraging success, safety from predators, and energy savings through hy-
drodynamic interactions when swimming in formation. Underwater robot collectives 
may be able to achieve similar benefits in future applications, e.g. using formation control 
to achieve efficient spatial sampling for environmental monitoring. Although many the-
oretical algorithms exist for multi-robot formation control, they have not been tested in 
the underwater domain due to the fundamental challenges in underwater communication. 
Here we introduce a leader-follower strategy for underwater formation control that allows 
us to realize complex 3D formations, using purely vision-based perception and a reactive 
control algorithm that is low computation. We use a physical platform, BlueSwarm, to 
demonstrate for the first time an experimental realization of inline, side-by-side, and stag-
gered swimming 3D formations. More complex formations are studied in a physics-based 
simulator, providing new insights into the convergence and stability of formations given 
underwater inertial/drag conditions. Our findings lay the groundwork for future applica-
tions of underwater robot swarms in aquatic environments with minimal communication. 

Keywords: Formation control, Swarm Robotics, Bio-inspired Robots.  

1 Introduction  

Collectives of fish and fish-like robots have much to gain from moving in formation. 
In nature, thousands of fish schools coordinate their movement to migrate long dis-
tances, efficiently forage, and evade predators. Schooling is thought to confer many 
survival advantages, including hydrodynamic efficiency [1, 2]. By swimming in spe-
cific formations, it is hypothesized that fish leverage the fluidic interactions between 
their wakes to achieve higher thrust. Previous studies have documented many swim-
ming formations adopted by schooling fish, including in-line swimming (one-behind-
another), side-by-side (lateral) swimming, and staggered (diamond formation) swim-
ming [3]. In the future, fish-inspired underwater robot “schools” can enable many im-
portant applications, from environmental monitoring of fragile ecosystems to search-
and-rescue operations [4-6]. Underwater robot collectives can also benefit from moving 
in formation, for predictable spatial sampling, shared navigation, and potential energy 
savings. Fish-inspired robots can also serve as science platforms to test and validate 
hydrodynamic theories of how schooling formations in nature lead to energy benefits. 
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Formation control is an active area of research in robotics. Theoretical strategies for 
formation control have been quite diverse, ranging from reactive controllers such as the 
behavior-based methods [7] and potential field approaches [8], to more sophisticated 
controllers based on graph-theory [9, 35] and Lyapunov functions [10]. Some of these 
algorithms have been implemented on terrestrial robots [7, 11, 12], aerial robots [13-
16], and unmanned surface vessels [17], focusing mainly on 2D formations and relying 
heavily on wireless communication and Global Positioning System (GPS). However, 
achieving underwater formation control poses significantly greater challenges. The pri-
mary difficulty stems from the high attenuation of radio frequency signals in underwa-
ter environments [4], which precludes the use of conventional methods employed by 
aerial or ground robots, such as GPS and Ultra-Wideband for navigation and coordina-
tion. Vision-based perception holds promise for enabling robot convoying in these chal-
lenging underwater settings. A supervised learning-based tracking approach has been 
implemented for two underwater robots, relying on vision to follow a target robot in 
the open sea [36]. However, this method requires extensive pre-annotated training data 
and has not demonstrated more complex formations beyond tracking. Overall, perform-
ing formation control with fully submerged underwater vehicles is still challenging. 

The main contribution of this paper is the first experimental realization of multiple 
formations in three-dimensional underwater environments with an entirely vision-
based leader-follower controller. The key innovations of our method include: (a) the 
absence of any explicit inter-agent communication with followers operating without 
advance knowledge of the leader's path, (b) the reliance on visual inputs exclusively, 
gathered by dual wide-angle cameras to ascertain the leader's bearing, pitch, heading 
angles, and the leader-follower distance, (c) the ability to achieve 3D formations in 
spite of perception errors and fluid effects. We use the BlueSwarm platform to demon-
strate the successful implementation of fish-inspired formations, including in-line, side-
by-side, and staggered swimming. We also demonstrate 3D formation, where robots 
follow a leader not just laterally but also vertically, using pitch angle control. Our hard-
ware experiments focus on a single leader navigating a predefined trajectory—either a 
straight line or a circle—with one to two followers following on its side at different 
depths. Through simulation, we extend our results to include multiple followers, and 
we demonstrate how different formation positions have different stability properties 
underwater. Our research provides new insights, bringing us closer to future underwater 
robot swarms with enhanced visual perception and agility, that can move in complex 
3D formations to achieve novel missions. 

2 Related work 

Formation control involves controlling robotic agents such that they move as a group 
while maintaining specific relative positions within the group, e.g. moving in a line or 
V shape or grid. There is a large body of work in theoretical control algorithms for 
formation control of general multi-robot systems [10, 17-21]. Common approaches in-
clude behavior-based strategies and artificial potentials, leader-follower strategies and 
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graph-theory, and virtual structure strategies [10, 17, 18]. These strategies are not mu-
tually exclusive and can be integrated or used complementarily.  
      In behavior-based formation [7, 22], robots respond based on a weighted combina-
tion of several desired behaviors, such as maintaining formation, moving towards a 
goal, and collision avoidance. The configuration of the desired formation is facilitated 
by the potential field, which enables automatic spatial distribution [8]. Behavioral strat-
egies are characterized by their decentralized nature, minimal communication require-
ments, and simplicity of implementation. In leader-follower approaches, one or more 
agents are identified as leaders, and the other following agents keep a constant distance 
and orientation from the leaders [11, 23]. The leader-follower approach can be com-
bined with graph theory to enable transitions between formations [9, 13]. In the virtual 
structure strategy, a centralized overseer controls the dynamics of virtual leaders and 
other agents in the formation  align their motion with the virtual leaders [24]; a decen-
tralized scheme was proposed in [25].  

Theoretical formation control algorithms are not domain specific; robots are repre-
sented as idealized agents with strong assumptions about communication, unique iden-
tifiers, neighbor perception, well-specified and independent dynamics, etc. Implement-
ing these algorithms on real robot systems has been challenging. Several examples con-
sist of ground-based robots [7, 11, 12, 22], and above surface scenarios such as satellites 
[19] and unmanned aerial vehicles (UAVs) [13-16],  mostly focused on 2D formations. 
Few attempts exist in underwater formation control, and are limited to a single horizon-
tal plane [26, 27, 36]. In most of these implementations, the use of a wireless commu-
nication network and external global localization (GPS, or Vicon Motion Capture) are 
essential. Robots use the wireless network to exchange critical information, typically 
broadcasting their ID, pose, and velocity at high rates, allowing them to maintain spe-
cific positions relative to specific agents [4, 10, 13, 22, 37]. However, many challenges 
in swarm control algorithms stem from this dependence on communication. Underwa-
ter environments exacerbate these challenges due to the rapid attenuation of radio fre-
quency signals in water, making wireless communication, external localization, and 
centralized control inaccessible. Furthermore, in nature fish schools use vision and local 
sensing to achieve formations, without explicit communication [1]. Therefore, there is 
a significant interest in developing algorithms for underwater swarm formation control, 
which rely on local perception rather than explicit communication [36].  

3 Methodology 

Our experiments are based on a 3D underwater swarm platform called BlueSwarm. 
This platform is comprised of 6 fully-autonomous miniature fish-inspired robots called 
Bluebots (Fig. 1b) with 3D maneuverability enabled by their multi-fin design and 3D 
perception enabled by fish-eye cameras and blue LEDs [28, 29]. Bluebots can control 
forward motion, turning, and depth independently. They are engineered for passive sta-
bility, allowing for yaw movements without the occurrence of roll or pitch. Each Blue-
bot is equipped with two wide-angle cameras and three blue LEDs for rapid detection 
of the position and heading of nearby robots with a small blind spot at the rear (~5 
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degrees). All experiments took place in two tanks: a small rectangular pool measuring 
2.2 x 1.4 x 0.5 m3, and a large cylindrical steel tank with dimensions of 6.4 meters in 
diameter and 2.4 meters in depth (Fig. 1c). Note that both settings are very large com-
pared to a Bluebot, with 1 meter being ~7.7 body lengths (BL). Overhead views of the 
robots were recorded using webcams positioned above each tank, the large tank also 
has a viewing window where a GoPro camera was placed to capture side-view videos. 
Once submerged underwater, Bluebots interact purely based on their onboard local 
computation and visual detection of neighbors. There is no communication possible 
with human or external computers.  
  

  
This experimental underwater domain poses several key deviations from common 

theory assumptions: (1) Perception errors: Vision-based neighbor sensing underwater 
has many sources of error due to partial/full occlusion, surface reflections, and limited 
long-distance resolution. Furthermore, the heading error depends strongly on relative 
position due to the non-holonomic shape (e.g., robot pointed towards/away looks the 
same) (2) Perception-Control Loop: Bluebots have a limited vision-processing rate of 

 
Fig. 1. We study fish schooling behaviors with the BlueSwarm robotic platform. 
(a) Fish exhibit collective swimming patterns in 3D (credit: istock).  (b) Bluebot 
Robot: 3D motion is achieved by multiple fins enabling forward motion, turn in 
place, and depth control. The perception of leader robot (LEDs) is realized with 
onboard sensing and processing. (c) Tank facility showcased with a human figure 
to provide scale, equipped with both top and side cameras for recording. 
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5 Hz, which prevents more sophisticated forms of neighbor estimation and prediction. 
Even with higher computational resources, online natural vision processing remains 
slow in both underwater and aerial vehicles. (3) Underwater dynamics: Fluid forces 
significantly impact motion controllability but remain difficult to model or sense. Blue-
bots are never stationary and drift constantly even when all fins are off. They have 
relatively large inertia compared to fluid drag and cannot brake or swim backward. In 
the context of formation control, robot’s trajectories are also being impacted by neigh-
bors’ wakes in ways that are still barely understood. Despite the major advances in 
Computational Fluid Dynamics (CFD), it is still intractable to simulate the complex 
fluid interactions for free-swimming Bluebot formation control. Our goal therefore is 
to investigate experimentally whether formation control can be achieved that is robust 
to the constraints and limitations of underwater perception and control, and to inter-
rogate the gap between theory models and experimental realizations. 
 

 

3.1 Formation Control Algorithm and Vision Processing 

We chose an algorithm that combines behavior-based [7] and leader-follower methods 
[9, 23], and extend the methods to 3D space. We chose this reactive approach because 
of its simplicity of assumptions and potential for robustness to sensing error and leader 
trajectory changes. The system defines two agent roles: the leader (L), tasked with nav-
igating a predetermined path, and the followers (F), who lack any prior knowledge of 
the leader's trajectory, but are charged maintaining a position relative to the leader. The 

 
Fig. 2. (a) Defined zones as seen from the perspective of the follower (orange fish). 
(b) From the follower’s point of view, the bearing 𝜙, pitch 𝜃, and distance 𝑑 to 
leader. (c) The leader’s heading direction 𝒉. (d) A target position defined by rotat-
ing the heading vector with an angle of 𝛼 and shift with a distance of 𝑙. 
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leader swims in a straight line or a circle with open loop control at a predefined depth 
underwater. The follower achieves formation in two steps: a perception phase, where 
the leader's pose and heading are ascertained, followed by a movement phase, where 
the actuation of fins is determined by the follower's position relative to the leader. 

The follower robots utilize vision exclusively to acquire critical information about 
the leader. The leader Bluebot has its blue LEDs on. If there are multiple followers, 
then those Bluebots will have their LEDs off.  Future variations can have two colors of 
LEDs, to distinguish leaders from followers. The vision processing by the follower has 
several steps:  

(i) Blob detection and LED parsing: In each processing cycle, lasting 0.2 seconds, 
the follower robot captures a pair of images from its left and right cameras. It then 
detects the leader’s characteristic features (𝑝𝑞𝑟 coordinates) of three blobs using the 
custom-designed blob detection algorithm introduced in our prior work [29, 30]. The 
vision algorithm processes the input images and discerns the sequence of the three 
LEDs on the leader, where the order of detected LEDs is crucial (Fig. 2b). As the robot 
prohibits pitch movement, the two posterior LEDs 1 & 2 remain stacked. To avoid 
miscounting water surface reflection as LEDs, the lowest two blobs are selected to cal-
culate distance 𝑑 using geometry mapping, similar to our prior work [30]. 

(ii) Leader Pose Determination: Bearing can be calculated from LEDs 1 &2 using  
𝜙 = arctan 1

𝑞
𝑝2	

(1) 

where p and q represent the coordinates of the leader's blobs in the pqr coordinate sys-
tem from the follower's perspective in camera space. To determine the direction 𝒉 in 
which the leader is heading (Fig. 2c), the follower must use the 3rd LED as a reference. 
A blob that closely matches the pitch of the two previously identified blobs is recog-
nized as the third LED. With the Bluebot setup, we establish a threshold for pitch dif-
ference at 6 degrees, based on experimental data as the maximum pitch variation at 
which a robot can detect its neighbor’s LED. Blobs not meeting this criterion are con-
sidered reflections and thus ignored. 

(iii) Target Pose (Fig. 2d): To maintain a position alongside the leader, the follower 
computes the new target pose using: 

𝒙𝒈𝒐𝒂𝒍 = 𝒙𝒍𝒆𝒂𝒅𝒆𝒓 + 𝑙	𝒉 ⋅ 𝑹𝒛(𝛼) (2) 
where 𝒙𝒍𝒆𝒂𝒅𝒆𝒓 is the leader's pose vector in 𝑥𝑦𝑧 coordinates, which is translated from 
the camera's representation to real physical world dimensions. The scalar 𝑙 denotes the 
predetermined following distance in the xy plane between agents. The vector 𝒉 refers 
to the leader’s heading vector, and 𝑹𝒛(𝛼) is a 3 × 3 rotation matrix along 𝑧 direction 
with a predefined following angle 𝛼. 

(iv) Target Pitch (Fig. 2b): The depth control of the follower is controlled separately 
based on the pitch angle of the leader observed from cameras: 

𝜃 = arctanA
𝑟

B𝑝) + 𝑞)
C (3) 

A positive angle means the leader is lower than the follower and vice versa. The fol-
lower switches the dorsal fin on to move down, and switches the dorsal fin off to move 
up using positive buoyancy.  
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The follower’s movement phase is governed by an enhanced zone concept, origi-
nally introduced in [7] and now extended into 3D space. As shown in Fig. 2a, the space 
is divided into three zones: the approach zone, the follow zone, and the dead zone. In 
the approach zone, the follower is at a considerable distance from the leader. It desig-
nates the leader’s position as the target and moves toward it at the maximum speed. 
Upon nearing the leader, the follower transitions to the follow zone and aims for a spe-
cific formation position defined by a desired angle 𝛼 and a desired lateral distance of 𝑙 
from the leader. The speed of the follower in the follow zone is set to be linearly de-
pendent on the distance between L and F, which varies from a maximum at the farthest 
edge of the follow zone to a minimum at the inner edge. The depth of the robot is 
controlled by adjusting the dorsal fin to follow the leader at a desired pitch angle 𝜃*. 
When the follower gets too close to the leader, it enters the dead zone, and all fins 
except the dorsal fin stop actuation to avoid collisions. 

4 Experimental Demonstrations and Results 

Using the setup and algorithms outlined above, we demonstrated and tested three for-
mations that are commonly observed in fish schools: in-line (follower behind the 
leader), side-by-side (follower is to left or right of the leader, at same or different 
depths), and staggered (two followers). In each case, the follower is attempting to main-
tain a pre-specified distance, bearing, and depth relative to the leader. We include vid-
eos of all experiments here (https://youtu.be/9WoqaPVQCfU). We use tracked trajec-
tory data to determine the success of the formation control. We processed the overhead 
camera recordings using a custom MATLAB program to track the horizontal movement 
of the robots, and the vertical displacement of the robots was retrieved using their 
onboard depth sensor. We conducted two sets of experiments, 1 leader + 1 follower in 
the large tank and 1 leader + 2 followers in the small pool. In the simulation section, 
we extend our results to larger numbers of followers. 

4.1 Follow a leader swimming in a straight line in the same plane 

In the first experiment, we demonstrated a follower robot’s capability to track a leader 
either directly in-line behind or side-by-side, maintaining alignment within the same 
horizontal plane. The leader was programmed to swim in a straight line. The follower 
was configured with an approach threshold of 500 mm. When the distance was larger 
than this threshold, the follower targets following behind the leader in in-line position. 
If the distance fell below this threshold, the follower would adjust to position itself 
beside the leader at a 90° angle and a lateral distance of 200 mm (1.5 BL). The pitch 
angle was assigned to remain within a range of [-1, 1] degrees so that the follower 
maintained the same planar alignment as the leader.  

Tracking data shows that the formation was successful. Fig. 3a shows the initial 
states of the robots, positioned at a distance greater than the approach threshold, each 
with a random heading orientation. Fig. 3b shows the trajectories from start to 15s when 
the follower targeted to follow right behind the leader. Once the follower entered the 

https://youtu.be/9WoqaPVQCfU
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follow zone, it adjusted its target position to the leader’s left, maintaining a side-by-
side formation (Fig. 3c and 3d). Figure 3e shows that the follower kept about 250 mm 
from the leader in the follow zone.  

We also see some spikes in the data that indicate specific events and noises. A col-
lision at 73 seconds distorted vision and distance measurements until 78.7 seconds. At 
260s the leader turned off its LEDs and laboratory lights were switched on at 270s. Post 
270 s, the vision algorithm was deceived by ambient lights, erroneously detecting the 
leader at a much closer range than actual. There are noises in calculating target distance 
(equation 3), which shows up as sporadic spikes (1.38%). 

The follower was able to maintain the formation despite these visual errors. We ob-
served an increase in the vision processing error rate upon integrating and analyzing 
the third LED to determine leader heading. Prior work with Bluebots used only two 
LEDs to determine distance from neighbors [29]. The addition of a third LED is essen-
tial for formations because a follower needs leader heading information to ascertain its 
target position, e.g. left or right of the leader. The error in heading determination de-
pends on the relative orientation of the leader and follower, e.g. LEDs 1 and 3 may 
appear as a single blob when the leader is directly in front at [-30, 30] degree angle. 

 
Fig. 3. (a) Robots in the big tank with random initial positions, showing the leader 
robot encircled by a blue arrow and the follower robot by an orange arrow. (b) The 
follower robot (red) trails directly behind the leader (blue) in the approach zone. (c) 
Upon entering the follow zone, the follower robot positions itself beside the leader. 
(d) Trajectories of the leader and follower after 53 seconds of movement. (e) Dis-
tances to the leader and the targeted pose as observed by the follower robot. (f) 
Vertical positions of leader and follower robots from the onboard depth sensor.  
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Reflections from the water surface are more likely to be erroneously identified as a third 
LED in such cases. By implementing additional error corrections (discussed in section 
3) the follower managed to maintain an accurate estimate of the leader’s pose and head-
ing. However, it did not eliminate the occurrence of incorrect estimations. 

Figure 3f shows the follower’s adjustments to match the depth of the leader. Initially, 
from 0 to 14 seconds, the follower successfully descended to align with the leader’s 
depth plane. Subsequently, from 14 to 73 seconds, the follower exhibited oscillations 
around the leader’s depth, with a maximum deviation of approximately 140 mm, equat-
ing to 1.06 BL. Upon colliding with the wall at 73, the follower’s path showed increased 
deviation from the leader’s depth (73s – 110s), peaking at a maximum divergence of 
264 mm (2.03 BL). The follower gradually recovered, re-establishing a following pat-
tern with an approximate deviation of 1 BL. 

4.2 Follow a leader swimming in a circle at different depths 

To further assess the algorithm’s robustness, we conducted tests with the leader per-
forming a circular swim and the follower navigating alongside at various depths. In the 
follow zone, the follower’s target position was defined to be at a ±90° angle relative to 
the leader’s head, prompting it to either widen or tighten its orbit in accordance with 
the leader’s trajectory. The follower was programmed to maintain a lateral gap of 150 
mm and a pitch angle between [-40, -45] degrees with respect to the leader, resulting in 
a desired Euclidean distance of 196 – 212 mm. 

Fig. 4 shows the performance of following on leader’s outside and inside. The side 
view images validate the follower’s ability to maintain a deeper position in the water 
compared to the leader. In scenarios where the follower is required to follow in a larger 
circle, it must swim at a faster rate to keep pace with the leader’s side. The top view 
confirms the follower’s capacity to preserve its relative position to the leader. However, 
due to the maximum speed constraints of the Bluebot, the follower ended up adopting 
a lagged angle, resulting in a staggered formation. In contrast, in the case of following 
within a smaller circle, the follower tended to overshoot during the leader’s turns, lead-
ing to an erratic following path.  

Figure 4c plots the follower’s estimated distances to the leader and the target, high-
lighting a pattern of greater separation when following a larger circle compared to a 
smaller one. In the larger circle following case, the distance to the leader averaged 
around 350 mm, which was ~1 BL larger than the intended following distance, likely 
due to insufficient response speed. In contrast, the average following distance in the 
smaller circle was approximately 0.5 BL less than the target, suggesting a tendency for 
overshooting. The smaller circle's path also demonstrated more discontinuities, attribut-
able to the visual processing challenges presented by the necessity of executing tight 
turns to maintain clear sight of the leader. The depth profiles in Fig. 4d show that the 
follower was able to maintain to follow at deeper depths around 700 mm depth, though 
with oscillation, which might be caused by the large following pitch range of 5 degrees 
assigned to the follower.  
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From our experiments, it can be recognized that not all formations pose the same 

level of challenge for the robot’s visual perception and maneuverability. Following be-
hind a straight-swimming leader is comparatively simple. Once the follower aligns with 
the targeted position, maintaining a straight trajectory involves minimal turning, which 
is the simplest form of navigation. Here, the follower primarily propels forward, a di-
rection where it exhibits maximum control and maneuverability. On the other hand, 
tailing a leader that engages in continuous turning significantly increases the difficulty. 
The robots must constantly adjust to provide the appropriate centrifugal force to turn, 
all while keeping up with the leader’s speed and maintaining the correct relative posi-
tioning. Moreover, following on the outside versus the inside brings its own set of chal-
lenges. When following externally, the follower must increase its speed to compensate 

 
Fig. 4. A leader robot is programmed to swim in a circle in open loop control, and 
a follower robot follows in a larger circle and a small circle. (a) The trajectories for 
leader (blue) and follower (red). (b) Side views of the following performance. (c) 
The estimated distances to the leader robot and to the target position from the fol-
lower’s perspective. (d) Diving depths of both robots from onboard depth sensors.  
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for a greater turning radius. Conversely, an internal following demands rapid adaptation 
to the leader’s rapid changes in position and heading. This requires the robot to have 
not only better maneuverability during turns but also a faster rate of vision processing. 

4.3 Two followers with a single leader moving in a line.  

In Fig. 5, we expanded our experiments to include one leader and two followers on 
both sides of the leader within the small pool, demonstrating the algorithm’s applica-
bility to multi-agents scenarios. These trials were confined to a smaller pool due to 
facility constraints; although the overhead camera for the larger tank was positioned to 
capture the entire area, its resolution was insufficient to identify follower robots when 
their LEDs were turned off. As shown in the video and figures, the robot initially started 
in the wrong position by then quickly achieve the correct side by side formation. They 
are able to follow the leader even when it makes an unexpected turn.  
 

 
Fig. 5. Two followers following a leader’s sides. Each frame captures a different 
timestamp, denoted by t = 0s through t = 36s, demonstrating the followers’ ability to 
maintain formation over time (trajectory is marked by a dotted trail). 

5 Simulation Demonstrations and Extensions 

To further evaluate our formation control algorithm, we conducted simulations using 
a BlueBot simulator, previously validated and described in [30]. The simulator repli-
cates the Bluebot's hydrodynamic design, where agent movement is generated by the 
actuation of pectoral, dorsal, and caudal fins. External forces in the simulations are 
based on physical principles, including a thrust proportional to fin flapping frequencies, 
and a fluid drag proportional to the velocity squared. However, it does not model com-
plex fluid effects, such the wake of neighboring robot. In line with the sensory capabil-
ities of actual Bluebots, simulated agents detect each other by processing the LED blobs 
from neighboring robots. Agents have a blind spot and blobs can be obstructed by 
neighbors. However, the simulated vision is not subject to other parsing errors and have 
a larger effective range compared to experiments. The simulator provides a reasonable 
approximation to the real hardware system that allows us to systematically investigate 
more initial conditions, more robots, and  test potential extensions to the algorithms.   

5.1 From Zones to Hyperbolic Control  

As a first simulation study, we replicate our experimental formation study in Section 
4 and test the robustness to random initial conditions. Fig. 6 shows that an agent can 

t = 5 s t = 17 s t = 36 s
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successfully follow on both the inside and the outside of the leader regardless of its 
initial position. In both cases, the follower successfully estimated the relative location 
and heading of the leader and eventually converged to its goal location, i.e. 200 mm 
away from the leader laterally. Followers instructed to follow on the right and on the 
left of the leader moved in circles of different radii without building any model of the 
leader’s behavior. We verified that this behavior over 30 initial conditions. 

However we noticed that the follower did not settle down to a perfectly circular tra-
jectory (Fig. 6 a,d), which we also observed in the experiment. Instead it fluctuated 
around the targeted position (Fig. 6, b,e) and distance (Fig. 6 c,f). This is because Blue-
bots have a relatively large inertia compared to the fluid drag (Re~O(104) ) [31], and 
have limited ability to brake actively, both features captured in our simulation. As a 
result, simulated agents could not be controlled perfectly and often drifted past their 
target. Critically, following on the outside versus inside required different control in-
puts. Following on the right side of the leader requires a larger turning radius and a 
higher speed, calling for a higher frequency from the caudal fin (Fig. 2b) compared to 
the pectoral fin. The opposite is true when following on the inside. The zonal approach 
was not able to automatically adjust for such a difference.   

To further increase the accuracy of formation control, we investigated a variant of 
the control approach where the zonal separation (Fig. 2a)  was replaced with a hyper-
bolic tangent function. In this modified approach, the driving frequency of the caudal 
fin (and hence the thrust) increased smoothly with distance between the following agent 
and the target position. This approach allows the follower to automatically adapt to the 
turning radii required to maintain the formation. When following on the outside, the 
follower is always farther from the target position compared to following on the inside, 
resulting in a higher caudal fin frequency and thrust. Figure 6 (g,h) shows that the mod-
ified approach indeed led to more accurate formation control. Compared to Fig. 6 (c,f), 
the following agent stayed closer to the target position for both cases. In clear contrast 
with the zonal approach, Fig. 6 (g,h) also shows that the distance between agents con-
verged better to the set distance at 200 mm. In practice, current Bluebots have limited 
smoothness in their speed control, however future versions can use such functions to 
achieve even higher accuracy and smoothness.  

5.2 Complex Hexagonal Formation 

We also used the simulator to test more complex formations with multiple agents. 
In particular, we wanted to investigate whether certain formation positions were easier 
or harder than others. Formation control algorithms typically ignore this aspect, assum-
ing all positions are the same. However non-holonomic vision and motion, plus the 
impact of inertial motion in water suggest otherwise. In our experiments we observed 
that in-line formation (follower directly behind)  makes it difficult to detect leader head-
ing, while 3D staggering improves behavior by reducing collision avoidance.   

Fig. 7 (a-b) shows an example of six agents following in a hexagon pattern around a 
leader. Such a formation around a circular leader leads to multiple circular trajectories 
of different radii (Fig. 7a). While most agents fell into their prescribed locations with 
respect to the leader (Fig. 7b), the agents right behind (#3) and in front of (#6) the leader 
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failed to maintain its position as well as the other followers. Agent #3 was limited by 
its ability to calculate the leader’s heading. Situated directly behind the leader, it could 
not see all 3 LEDs of the leader (Fig. 2b). Limited visibility is also partially responsible 
for agent #6’s imperfect tracking. Bluebots had a blind spot right behind them, which 

 
Fig. 6. (a, d) Trajectories of the leader (blue) and the follower (red) in the lab frame. 
The darkness indicates time and 30 numerical trails starting from different initial 
locations are shown. (b, e) Trajectories of the following agent with respect to the 
leader. Blue arrow indicates orientation of the leader. (c-h) Time series of the dis-
tance between leader and follower. Different colors show different numerical trials. 
The zonal approach was used in (a-f), and the modified algorithm used in (g,h). 

 
Fig. 7. (a) Trajectories of six agents forming a hexagon pattern around a leader 
moving in a circle. (b) Distance between the agents and the leader. Different colors 
represent different followers. (c - d ) Trajectories of multiple followers. One leader 
(top) moves counterclockwise and the other (bottom) moves clockwise.  
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was captured in our simulator. Therefore, the agent in front of the leader often lost sight 
of the leader temporarily before finding it again when it was at a bearing angle behind. 
Furthermore, agent #6 needed to constantly readjust its pose by braking and turning at 
the same time to maintain its position, which was difficult for Bluebots. 

Fig. 7 (c-d) demonstrates that our algorithm can be applied to scenarios with more 
than one leader. As the two leaders circled in opposite directions with different radii, 
the agents followed the leader the closest to them. The leaders occasionally crossed 
paths and the followers reshuffled. The relationships between leaders and followers 
emerged automatically from our algorithm. This could be a desired feature for applica-
tions where several leaders move along preprogrammed trajectories or are remotely 
controlled while multiple followers remain on their sides based on proximity. 

6 Conclusion and Future Work 

The main contribution of this paper is the experimental realization of an entirely vision-
based 3D formation control algorithm, using a behavior-based leader-follower strategy. 
Unlike previous work in ground and aerial robots, no explicit communication or exter-
nal global localization is used. We demonstrate the successful implementation of fish-
inspired formation behaviors, such as in-line and side-by-side swimming, using the 
BlueSwarm robotic platform. We also demonstrate 3D formations, where robots follow 
a leader not just laterally but also vertically, using pitch angle control. These formations 
are important for scientific studies of hydrodynamic hypotheses, to understand how 
energy savings arise from the fluid interactions of vortex shedding in fish pairs, and 
how to extend those energetic savings to future underwater robots. Furthermore, under-
water robots moving in formation can leverage better algorithms for spatial sampling 
and group navigation in complex environments. Our research also provides new in-
sights into the theory2robots gap for underwater systems; we find that reactive algo-
rithms are able to successfully achieve formations in spite of perception errors and lim-
ited perception rate, but that inertial drift and non-holonomic control makes certain for-
mation positions harder than others.  Overall, our work brings us closer to realizing real 
underwater robot swarms, that can achieve more complex missions such as energy-
efficient long-distance navigation.  
    An important area of future work is improving physical underwater swarm platforms, 
enhancing both visual perception and agility. Blue LEDs are limited to lab settings, and 
as computation becomes smaller and cheaper, underwater robots can include more nat-
ural vision processing that will allow them to swim together in cluttered environments 
such as coral reefs or underwater wrecks [36, 37]. Bluebot multi-fin actuation provides 
substantial 3D agility, but only at slow speeds (1 BL/s) and with low thrust. Future fish-
inspired robot platforms can take advantage of higher speed/thrust flapping actuation 
that can operate in natural environments [32-34]. However, these platforms must also 
include agility in yaw and depth maneuvers in order to do 3D leader-follower behaviors. 
Such platforms could eventually even follow fish or accompany fish schools, providing 
us with unprecedented insights into these amazing natural systems.  
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