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Abstract— Cooperative transport is an impressive example of
collective behavior in ants, where groups of ants work together to
move heavy food objects back to their nest over heterogeneous
terrain. This behavior also serves as a model for bio-inspired
robotics. While many studies have considered the mechanisms by
which ants transport objects in simple settings, few have looked at
how they deal with obstacles and heterogeneous terrain. A recent
study on Paratrechina longicornis (crazy ants) demonstrated
that groups of these ants implement a stochastic, adaptive, and
robust cooperative transport strategy that allows them to succeed
at navigating challenging obstacles that require moving away
from their goal. In this paper, we use group-level computational
models to investigate the significance and implications of this
biological strategy. We develop an algorithm that reproduces
important elements of the strategy, and compare it to several
benchmark algorithms for a range of obstacle sizes and shapes.
QOur results show that, for smaller obstacles, the ant-inspired
adaptive stochastic strategy is adept at efficient navigation, due
to its ability to match the level of randomness it uses to unknown
object size and shape. We also find some unexpected differences
between our results and the original ant transport behavior,
suggesting new biological experiments.

I. INTRODUCTION

In an impressive example of emergent behavior, some ant
species form groups to collectively carry large food objects
home to their nests. While many ant species are uncoordinated,
some can cooperatively transport objects many thousands of
times the mass of an individual; centimeter-scaled weaver ants,
for example, are able to cooperatively carry dead birds and
reptiles up trees to their arboreal nests [1]. The ecology and
mechanisms of cooperative transport have been an active area
of research in both biology and computer science, where ant
behavior has served as bio-inspiration for robotic cooperative
transport [2]. Experimental studies of ant cooperative transport
have improved our understanding of the mechanisms that allow
for the recruitment of a sufficient number of ants at a heavy
object, and that enable these individuals to coordinate their
efforts and move successfully in the direction of their nest in
flat terrains [3], [4], [5].

Natural environments pose a complex challenge to groups
of ants engaged in cooperative transport, as ants must navigate
to their nests across heterogeneous terrain. At an ant’s scale,
even small features such as leaves and twigs complicate navi-

gation. Yet the mechanism by which ants are able to navigate
these obstacles while engaged in cooperative transport has
not been well-studied. Obstacle navigation requires making
a series of decisions that build on one another, rather than
a discrete decision, and is thus akin to maze navigation,
requiring problem solving. There is a tradeoff between simple
and robust obstacle navigation strategies; simple strategies that
only require limited information will succeed with a narrower
range of obstacle types than more complex approaches. The
strategy complexity comes at a cost, requiring more difficult
sensing, memory, and communication by the ant group.

A recent set of experiments by McCreery et al.[6] looked
at the obstacle-navigation strategy of groups of crazy ants,
Paratrechina longicornis, a species that is highly effective
at group transport. The ants were presented with multiple
challenges, including a concave obstacle; concave obstacles
pose a special challenge as they require the ants to move
away from the direction of their nest. These experiments
suggest that this ant species employs a stochastic but time-
adaptive strategy that enables successful navigation of concave
obstacles. McCreery et al. [6] concluded that these groups
start with a relatively simple strategy, using nest direction
information, and incorporate increasing levels of stochastic
behavior into their strategy over time, moving farther away
from their goal the longer they are stuck.

In this paper, we use group-level computational models
to investigate the significance of this biological strategy. We
present an algorithmic description of the ant strategy described
by McCreery et al., and we develop a simulation environment
to test this algorithm with new obstacle scenarios beyond the
original ant experiments. We compare the effectiveness and
versatility of the ant-inspired algorithm to other algorithms,
such as stochastic algorithms that do not adapt with time,
as well as deterministic algorithms from robotics for single
robot navigation that require more complex reasoning. Our
results show that, for smaller obstacles, an adaptive stochastic
strategy is flexible to accommodating changes to obstacle size
and shape due to its time-varying behavior, which allows
the algorithm to match the level of randomness it uses to
unknown object size and shape. We also find some unexpected
differences between our results and the original ant transport
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Fig. 1.
generated by the Adaptive Stochastic algorithm.

behavior, suggesting new areas for biological experiments.
This work improves our understanding of the implications
of the observed biological navigation strategy used by ants,
suggests new algorithmic possibilities for navigation in simple
robots that can work in the presence of obstacles, and suggests
future possibilities for collective robotics.

II. MODELS

We begin this section by briefly summarizing the results
of McCreery et al [6]. Next, we discuss how we translated
their experimental setup into a computational model. Finally,
we express several elements of the ants’ behavior identified
in McCreery et al. as algorithmic components and construct
algorithms from combinations of these components.

A. McCreery et al. (2016)

McCreery et al. [6] compared the trajectories of groups
of ants transporting bait in the presence of three shapes
of obstacles that increase in complexity. The simplest of
these obstacles is a straight, short wall. The only information
required to successfully navigate the wall is the direction of
the goal. The cul-de-sac obstacle is more complex than the
wall, and forces the ants to move away from the goal to
succeed (Fig. 1a). McCreery et al. also obstructed groups with
an impossible trap (a cul-de-sac without an opening) to see if
transporting ants can detect that no solution exists.

P. longicornis groups appear to implement a stochastic,
adaptive strategy when navigating all three obstacles, in-
corporating the following behavioral elements: move toward
goal, symmetry breaking, perimeter following, spontaneous
direction changes, and move away from goal [6]. Importantly,
the behavior of these groups changed over time; the longer a
group was stuck, the more they moved away from their goal.
This strategy allowed them to rapidly solve the simple wall
and still succeed at the cul-de-sac. Although McCreery et al.
studied the behavior of ants acting collectively, they evaluated
the strategy of the ant group by recording the trajectory of the
bait only, as if it were a single entity.

Comparison of arenas. a) Experimental video still from McCreery et al. [6]; b) Sample trajectory taken by P. longicornis; c) Sample trajectory

B. Simulation Model

In this paper, we focus primarily on the cul-de-sac experi-
ments. The experiment arena dimensions are matched to the
area of the cul-de-sac experiment video (432mm X 280 mm,
A3 paper size) and we reproduce the shape, size, and position
of the obstacle in [6] by placing it in the center of the arena
(height 88 mm, width 160 mm, arms 40 mm each) (Fig. Ic).
The simulation is implemented in NetLogo 5.2 [12]; space is
modeled as continuous and time is modeled in discrete steps.

In the experimental study, the navigation strategy is studied
at the group level by recording and analyzing the trajectory of
the transported bait. The ants maintain a mostly steady speed
while cooperatively transporting their target object and rarely
stall [6]. Following the study choices, our group-level model
abstracts the ants and the bait together as a single agent that
travels at a constant speed of 8 mm per time step. Henceforth
we refer to 1 step as having a length of 8 mm. The agent is
considered to have reached the goal when it encounters the
northern border of the simulation.

C. Algorithms

We define three classes of algorithms based on strategy: De-
terministic, Stochastic, and Hybrid. We present both verbal
and finite state automata descriptions (Fig. 2) of the algorithms
contained in these classes. The Deterministic strategies are
inspired by a class of robot navigation algorithms, ironically
called "Bug" algorithms, that navigate unknown obstacles
using simple sensing strategies and without building maps
[7], [8]. We acknowledge that the BugO and BugD algorithms
contained within this class do make a single stochastic choice
upon encountering an obstacle; however, their behavior is
deterministic otherwise with respect to the obstacle. The
Stochastic strategy, Infinite Stochastic, employs a correlated
random walk. The Hybrid strategies allow switching between
deterministic and stochastic behaviors, as has been observed
in ants [6]. While each algorithm functions in its own right,
we also treat the algorithms Go North, Bug0, and Correlated
Random Walk as components in other finite state automata for
simplicity.
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Fig. 2. Finite State Automata descriptions of our algorithm components and combination algorithms. We denote the Correlated Random Walk component
here simply as Random. From top to bottom, left to right: Go North, Random, Bug0, Infinite Stochastic: Go North + Random, Timed Stochastic: Bug0 +
Random-Fixed, and Adaptive Stochastic: Bug0 + Random-Increasing.



Fig. 3. Sample simulated trajectories generated by different algorithms. a)
BugD; b) Infinite Stochastic; ¢) Timed Stochastic; d) Adaptive Stochastic.

Deterministic

1) Go North: In our simulation, the goal is defined as the
northern border and models nest direction for real ants. Go
North simulates the tendency of ants to move directly towards
their goal. An agent performing the Go North algorithm sets
its heading to north and advances 1 step per time step until
it reaches the goal (success) or is blocked (failure). Go North
is mainly used as a component to other algorithms. Failure
Condition: The agent is blocked to the north by an obstacle.
Unable to take any additional action, it remains stuck.

2) Bug0O: At a high level, Bug0 models the behavior of
perimeter-following when the simulated agent/ant group is
obstructed by an obstacle. The Bug0 algorithm, introduced by
Lumelsky and Stephanov [7], is known to work for navigating
simple convex obstacles. The agent performs Go North until its
failure condition is reached, i.e., it is blocked by an obstacle.
At this point, it chooses randomly from one of either left or
right, and turns in this direction 90° once per time step until
it is unblocked. It then advances in this new direction 1 step
per time step. If the agent is blocked, it again executes the
series of 90° turns until it is able to advance. This sequence
of actions results in basic perimeter-following behavior. While
perimeter-following, the agent checks each time step if north
is unblocked; if so, it switches back to the Go North algorithm.
Failure Condition: The agent is forced to turn south, then
becomes stuck in a looping behavior. It steps to the south.
On the subsequent time step, it detects that the northern
direction is open. Thus it moves north. Blocked again to all
other directions, it turns until facing south. The cycle repeats
infinitely and the algorithm fails.

3) BugD: The BugD algorithm, introduced by Kamon
and Rivlin [8], is able to escape the failure condition of
Bug0 by introducing an additional agent capability—the ability
to measure and compare distances to the goal. The agent
memorizes the distance to the goal upon first encountering an
obstacle to the north and will not attempt to go north, even if
unobstructed, unless it is already further north than the original

distance. Failure Condition: As shown in [8], BugD does not
have a failure condition and can navigate any set of polygonal
closed-boundary obstacles. The cul-de-sac is a classic obstacle
shape where Bug0 fails and BugD succeeds; this distinction
inspired its use in the biological study [6].

Stochastic

1) Correlated Random Walk: On each time step, an agent
chooses an integer in the interval [—60°,60°] uniformly at
random and adds that value to its current heading. It then takes
1 step in the direction of its heading. We choose the interval
[—60°,60°] based on visual inspection of simulated trajecto-
ries generated by our agent model and a blind test against
ant experimental trajectories from [6]. Failure Condition: A
correlated random walk is guaranteed to visit every point on a
plane, given infinite time. It does not have a failure condition.

2) Infinite Stochastic: The agent performs Go North until
blocked, then switches to Correlated Random Walk. Failure
Condition: Infinite Stochastic does not have a failure condition.
Hybrid

We consider two Hybrid algorithms, Timed Stochastic and
Adaptive Stochastic, that have the same underlying structure;
they begin with the simplest component behavior and add
complexity as simpler strategies fail. Both algorithms begin
in Go North. Upon encountering an obstacle, Go North fails,
which prompts the agent to switch to Bug0. Triggering the
failure condition of Bug0 causes the agent to transition to the
Correlated Random Walk phase for a specific duration. The
two algorithms determine this duration differently:

1) Timed Stochastic—Bug0+Random-Fixed: The agent per-
forms a Correlated Random Walk for a fixed, pre-determined
number of time steps. After the fixed duration ends, the phase
terminates, the agent switches to Go North, and subsequently
executes the chain of algorithm components again, switching
to BugO if it encounters an obstacle, and then again to the
Correlated Random Walk phase for the same fixed duration.

2) Adaptive Stochastic—Bug0+Random-Increasing: The al-
gorithm begins its first Correlated Random Walk phase with a
duration of 5 time steps. The duration of the Correlated Ran-
dom Walk phase doubles each time the algorithm encounters
the failure condition of BugO. The next time the algorithm
switches to this phase, it will execute for 10 time steps;
the next, 20, then 40, etc. The Adaptive Stochastic strategy
attempts to capture all of the behavioral elements observed
by McCreery et. al in the natural system, including goal-
directed travel when unobstructed, perimeter-following along
wall obstacles, and increasing stochastic trajectories when
forced to travel in a direction opposite from the goal.

III. EXPERIMENTS AND RESULTS

In this section, we present a series of simulation experiments
that compare the performance of the different algorithms
on multiple cul-de-sac inspired obstacles, looking first at
varying obstacle size and then at varying obstacle shape.
We define our performance metric as path length. Since our
simulated agent moves at a constant speed per time step, path
length is equivalent to the number of time steps taken by
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Fig. 4. Cul-de-sac sizes. a) Cp.5; b) C1; ¢) C1.5; d) Ca.

the agent to reach the northern goal; a shorter path length
denotes better performance. The simulation arena is created
in NetLogo 5.2 [12]. Each experiment consists of 10,000
runs of the simulation and is executed via the NetLogo
Behavior Space. To test whether our algorithms statistically
differ in performance, we use analysis of variance (ANOVA)
on log-transformed data where appropriate, including Tukey
HSD post-hoc comparisons. In some cases, data could not
be transformed to meet the assumptions of ANOVA, so we
use non-parametric Kruskal-Wallis tests, including Dunn post-
hoc comparisons with a Bonferroni adjustment. All statistical
analyses are performed in R 3.4.1 [13].

The Deterministic algorithms BugO and BugD also act as
bookend comparators in terms of performance. BugO always
fails in the cul-de-sac with infinite path length, and BugD
always succeeds by following the perimeter of the cul-de-
sac around the arm and then going straight north when it
reaches the end of the arm (path length = 73, Fig. 3a). The
purely stochastic approach, Infinite Stochastic, achieves a per-
formance in between, always succeeding but with inefficiency
and variability in path length (sample trajectory Fig. 3b).

Where do our hybrid algorithms lie in the performance
space? We hypothesize that the Timed Stochastic algorithm
will succeed at navigating the cul-de-sac obstacle with lower
mean path length and less variance than Infinite Stochastic, if
the fixed duration for Timed Stochastic’s random walk phase is
optimized to the obstacle size. In particular, the Timed strategy
should increase efficiency by preventing the agent from ran-
dom walking for too long after having successfully exited the
cul-de-sac obstacle. However, if the obstacle size is unknown,
then a Timed Stochastic strategy cannot choose an optimized
random walk duration. The Adaptive Stochastic strategy solves
this problem by searching for a good parameter; it starts with
a small duration and increases it the longer the agent remains
stuck. We also hypothesize that searching for a workable value
for the random walk duration will provide an advantage over
simply randomly walking through the space, and thus Adaptive

Stochastic will exhibit a lower mean path length and variance
than Infinite Stochastic. Given that the Adaptive Stochastic
strategy does not have a parameter tuned to each obstacle, we
do not expect it to outperform the optimized Timed Stochastic
strategy in terms of lower mean path length and variance.
Instead, we look at how high a price is paid by Adaptive
Stochastic for searching for the parameter, and compare the
flexibility of the two strategies.

A. VARYING CUL-DE-SAC SIZE

We denote the original cul-de-sac obstacle as C1, and create
variant cul-de-sac obstacles Cp 5, C1.5 and Cy with 0.5%,
1.5x, and 2x each of the wall lengths of (4, respectively
(Fig. 4). The area of each cul-de-sac scales as the square
of the increase or decrease in wall lengths; in other words,
doubling the wall length all around (as we did to create C)
quadruples the area of the resulting cul-de-sac. To determine
the optimized value for the fixed-duration random walk used
by Timed Stochastic, we perform a parameter sweep across
all cul-de-sac size variants. The optimized values for Cj 5,
Ci, Ci15 and Cy are 25, 100, 150, and 250 time steps,
respectively (Fig. 5). In the case of Cb, the parameter setting
of 200 appears to have better median performance than our
chosen value of 250 when simply observing the figure. But
the mean path length and variance generated by the parameter
setting 250 was lower than that of 200 (p = 200: mean
path length = 1488.55, o = 1272.67; p = 250: mean path
length = 1456.36, c = 1182.65). Since we favor consistent
performance, we choose to use 250 as the optimized parameter
for C5. For the remaining size cul-de-sac sizes, the median and
mean are in agreement for the optimized parameter value.

We test three strategies on each of Cy 5, C1,Cy 5, and Cy:
Timed Stochastic with optimized parameter per size, Adaptive
Stochastic, and Infinite Stochastic. Statistical tests showed
significant differences in algorithm performance among all cul-
de-sac sizes (Cp5: H = 9679, df = 2, p < 0.0001; Cy: F =
2157, df =2, p < 0.0001: C; 5: F = 1153, df = 2, p < 0.0001;
Cy: F = 646, df = 2, p < 0.0001). All post-hoc comparisons
in every size of cul-de-sac showed significant differences
between all pairs of algorithms (all p values < 0.0001). The
Timed Stochastic algorithm is the strongest performer of the
three strategies tested, exhibiting the shortest mean path length
and lowest variance of all three algorithms across each cul-
de-sac size variant (Cy 5: Timed— mean path length = 120.34,
o = 65.91; Adaptive— mean path length = 147.41, o = 98.06;
Infinite— mean path length = 408.81, o = 339.29. Cy: Timed—
mean path length = 352.47, o = 230.65; Adaptive— mean path
length = 544.68, 0 = 391.45; Infinite— mean path length =
656.24, 0 = 473.23. C 5: Timed-mean path length = 669.80,
o = 508.69; Adaptive— mean path length = 1010.12, ¢ =
721.34; Infinite—mean path length = 986.14, o = 754.75. Cs:
Timed—mean path length = 1456.36, 0 = 1182.65; Adaptive—
mean path length = 2051.581, 0 = 1556.99; Infinite—mean
path length = 1925.78, o = 1584.20). The performance of
Timed Stochastic supports our first hypothesis: there is a clear
advantage to fixing the duration of the random walk phase
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and optimizing it for obstacle size, in terms of both improved
efficiency and lower variance. The advantage persists across
obstacle scale, but is especially strong for smaller obstacle
sizes. However, the strategy is required to know obstacle size
ahead of time to set the right duration.

The Adaptive Stochastic algorithm uses a single general
strategy, regardless of obstacle size. Even without an optimized
parameter value, Adaptive Stochastic exhibits competitive
performance to Timed Stochastic across Cy 5 and C;. The
algorithm is also more consistent in performance than Infinite
Stochastic, having lower variance than the latter. But the
Adaptive Stochastic strategy has diminishing returns. For the
larger obstacle sizes, C75 and C5, the algorithm falls in
efficiency; indeed, at these sizes, the simulated agent is better
off performing a random walk, as Infinite Stochastic does.
One possible explanation for this is that at larger scales,
Adaptive Stochastic must complete multiple algorithm cycles
in order to search for a workable value, and the algorithm
incurs a heavy price by restarting random walks too many
times. Another artificial factor contributing to efficiency is
that the arena is bounded, and the area outside the cul-de-
sac is reduced as the obstacle scales up. The reduction in
area in turn reduces the price Infinite Stochastic pays for
doing a long random walk after having escaped the cul-de-
sac. Regardless, Adaptive Stochastic seems to exhibit the most
advantage for smaller obstacles. Furthermore, it is likely that
ants performing cooperative transport in a natural environment
encounter smaller complex obstacles, such as leaves and
twigs, with greater frequency than larger ones. In this case,
trading off efficiency at navigating larger obstacles for quicker
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Stochastic algorithms across cul-de-sac variants Cp 5, C1, C1.5, and Ca.

success at smaller ones, as Adaptive Stochastic does, would
be advantageous. Overall, we see mixed results in support
of our second hypothesis. Adaptive Stochastic does not pay
a high cost for searching for an optimal correlated random
walk duration at smaller sizes, and exhibits notable flexibility.
At these sizes, there is also a clear advantage in terms of
efficiency over simply random walking in terms of both shorter
mean path length and lower variance. However, the advantage
decreases with scale.

B. VARYING CUL-DE-SAC SHAPE

To further examine the effect of Adaptive Stochastic’s adap-
tive parameter on performance, we look at varying obstacle
shape by slicing the basic cul-de-sac C in half. We call
the resulting cul-de-sac C; 5. We compare the performance of
Adaptive Stochastic and Timed Stochastic using the optimized
parameter for Cy (Ci-opt.) on Cig.

In this scenario, both algorithms must break symmetry and
choose either the left or the right direction upon encountering
the back wall of the C';g obstacle. A choice of left leads to
an easy exit; conversely, a choice of right leads the agent into
the right corner, triggers the failure condition of Bug0, and
results in a switch to the random walk phase. We expect that
when this happens, starting with a smaller parameter value,
as Adaptive Stochastic does, should provide an advantage.
While Timed Stochastic must random walk for 100 time steps
after encountering the back right corner of the obstacle, under
the same conditions, Adaptive Stochastic will Go North after
random walking for just 5 time steps, and then has a chance to
encounter the back wall and choose left to successfully navi-
gate the obstacle with minimal path length from that point. On
the other hand, if Adaptive Stochastic repeatedly chooses right,
it needs to complete multiple algorithm cycles to increase its
random walk duration until it can successfully navigate the
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right arm. Our results show a statistically significant difference
in performance between the two algorithms (Kruskal-Willis H-
test; H = 51.1, df = 1, p < 0.0001). The Adaptive Stochastic
algorithm also exhibits lower mean path length and variance
(Adaptive—mean path length = 44.97, 0 = 18.98; Timed (C1-
opt.)-mean path length = 63.25, ¢ = 51.58). The median
values for the two algorithms, however, are identical (median
path length = 32), due to the fact that both algorithms have
an equal chance of choosing left upon first encountering the
back wall and reaching the goal with minimum path length
(Adaptive and Timed (C1-opt.)-minimum path length = 32).
This optimal path length dominates Q1 of the data (Fig. 7).

On this obstacle variant, Adaptive Stochastic benefits from
its flexibility; it can recover from choosing right during the
shorter duration random walks. Overall, we see further evi-
dence to support our second hypothesis: the flexible parameter
employed by Adaptive Stochastic drives it to a better overall
performance than Timed Stochastic when the target obstacle’s
shape is varied because it is able to adapt to the circumstance
it is faced with.

C. TRAJECTORY COMPARISON

The Adaptive Stochastic algorithm was designed to mimic
the behavior of the crazy ants described by McCreery et al.,
and to test the flexibility and generality implications of the
behavior that the authors suggested. However, some aspects
of the Adaptive Stochastic algorithm are not directly derivable
from experimental observation — especially aspects of the
random walk, such as the angular correlation or how durations
of random walks are adaptively increased. A visual com-
parison reveals a clear qualitative similarity between sample
trajectories generated by P. longicornis and those generated
by the Adaptive Stochastic algorithm when we look inside
the cul-de-sac (e.g., see Fig. 1b as compared with Fig.lc

and Fig 3d). The move towards goal, symmetry-breaking,
and perimeter following behaviors exhibited by the ants are
also well-replicated by the Adaptive Stochastic algorithm.
However, outside the cul-de-sac, we observed some clear and
unexplained differences in trajectory behavior. In particular,
the ant groups in McCreery et. al rarely re-enter the obstacle
after having exited, and seem to have a more smooth and direct
path towards the goal after exiting. In contrast, our simulated
trajectories frequently re-enter the cul-de-sac. To investigate
further, we present the number of cul-de-sac re-entries as a
quantitative metric and compare the number of re-entries taken
by the crazy ants and the Adaptive Stochastic algorithm.

We define a re-entry as having two stages—an exit and a re-
entrance. The agent is considered to have performed an exit
if it has passed the southernmost y-coordinate of the obstacle.
A re-entry has occurred if it the agent is in the exit stage
and passes the northernmost coordinate of the southern wall
of the obstacle. Working from the experiment videos from
McCreery et al., we manually counted the number of times that
the ants re-entered the cul-de-sac. Re-entries are rare and were
observed in roughly 16% of experiments (3/19). In just one
of these three experiments did the ant group make multiple,
clear re-entries; in the other two experiments, the ants barely
passed the lip of the obstacle.

Our Adaptive Stochastic algorithm, on the other hand,
causes the agent to re-enter the cul-de-sac at least once in
45% of trials (9/20). It is not immediately obvious why this
is the case. To investigate, we first examined the relationship
between the correlated random walk angle (6) and re-entry
frequency. The intuition behind this is that the value for
determines the width of loops in the random trajectory; a large
0 allows the trajectory to turn by a similarly large amount each
step. Therefore, a random walk that exits the cul-de-sac could
end up quickly looping back into the narrow opening. Based
on the looping of the original ant trajectories inside the cul-de-
sac, we approximated the value for the correlated random walk
0 as 60 degrees. By simulating different values, we found a
direct correspondence between 6 and the number of re-entries
(Fig. 8a). A correlated walk with [—20°,20°] degree interval,
for example, substantially reduces the number of re-entries.
However, using small values for 6 produces long, jagged
simulated trajectories that are unlike those of the ant groups,
and thus do not model the type of random walk performed by
the ants in the experiment video trajectories (compare Fig. 1b
to Fig. 8b-c).

An alternative possibility is that the ants employ a more
complex algorithm that changes once they have exited the
cul-de-sac. It is known that P. longicornis transport groups
tend to have many escort ants that do not engage in transport
of the bait, but seem to follow the object [4]. There has
also been recent evidence that in some cases, ants may lay
short pheromone trails to guide a transport group [9]. One
hypothesis is that these escort ants may act as informed
individuals and play some role in guiding the transport once it
has exited. While it is currently unknown how groups of ants
avoid re-entry, what is clear is that the Adaptive Stochastic
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Fig. 8. Relationship between 6, re-entries, and generated simulated trajecto-
ries. a) Re-entries per run observed for increasing values of 6. b) Trajectory
generated by 6 = 20 degrees. c) Trajectory generated by 6 = 40 degrees. d)
Trajectory generated by 6 = 60 degrees.

algorithm by itself does not capture the full behavior of the
cooperatively transporting ants.

IV. CONCLUSION

In this paper, we presented a computational model of an
adaptive navigation strategy, based on the experimental study
by McCreery et al. of Paratrachina longicornis (crazy ants)
cooperatively transporting bait in the presence of obstacles.
The crazy ants successfully navigated multiple obstacle types
and demonstrated a range of component behaviors, includ-
ing move towards goal, symmetry breaking, perimeter fol-
lowing, and random walks that increased over time. From
the experimental descriptions of these component behaviors,
we developed the Adaptive Stochastic algorithm to model
the presumed ant behavior, and compared the algorithm’s
efficiency and flexibility to that of two other strategies. We
showed that for smaller obstacle sizes, compared to pure
random walks or even random walks with fixed duration, the
Adaptive Stochastic algorithm is the most robust to varying
object sizes and shapes; with no parameter tuning, it achieves
efficient performance competitive with an optimized stochastic
algorithm. The Adaptive Stochastic algorithm also models
the ants’ movement inside the cul-de-sac trap well when a
qualitative comparison of trajectories is performed. Yet, in
a surprising result, the trajectories outside the cul-de-sac are
markedly different. Our results suggest that a single algorithm
may not be able to reproduce the entire range of behaviors
observed in McCreery et al.

Our computational study suggests several directions for
future investigations. Experiments can be conducted with P,

Longicornis on larger cul-de-sacs, such as our Co variant,
to investigate if the ants employ a different strategy when

the scale of the obstacle is increased dramatically. The same
experiments can also be extended to ant species that are strong
at cooperative transport [4], [10], to determine if other strategy
variations exist; if so, they can modeled using our framework
for simulation and algorithmic comparison. Most importantly,
the computational study shows that the Adaptive Stochastic
algorithm is not a complete description of the crazy ants’
behavior, and more experimental observations are needed to
understand the behavior outside of the cul-de-sac obstacle.
Our computational model also suggests new directions for
the development of algorithms for robots navigating in the
presence of obstacles [10], [11]: for single robots who cannot
measure distance accurately to the source, or, in future work,
translating group-level behavior to individual behaviors for
collective robotics. The Adaptive Stochastic algorithm pays
a cost in efficiency compared to BugD, but relies on simple
direction sensing and adaptive random walks to achieve rea-
sonable efficiency.
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