@inproceedings{746, author = {Florian Berlinger and Mihai Duduta and Hudson Gloria and David Clarke and Radhika Nagpal and Robert Wood}, title = {A Modular Dielectric Elastomer Actuator to Drive Miniature Autonomous Underwater Vehicles}, abstract = {
Abstract{\textemdash}In this paper we present the design of a fin-like dielectric elastomer actuator (DEA) that drives a miniature autonomous underwater vehicle (AUV). The fin-like actuator is modular and independent of the body of the AUV. All electronics required to run the actuator are inside the 100 mm long 3D-printed body, allowing for autonomous mobility of the AUV. The DEA is easy to manufacture, requires no pre-stretch of the elastomers, and is completely sealed for underwater operation. The output thrust force can be tuned by stacking multiple actuation layers and modifying the Young{\textquoteright}s modulus of the elastomers. The AUV is reconfigurable by a shift of its center of mass, such that both planar and vertical swimming can be demonstrated on a single vehicle. For the DEA we measured thrust force and swimming speed for various actuator designs ran at frequencies from 1Hz to 5Hz. For the AUV we demonstrated autonomous planar swimming and closed- loop vertical diving. The actuators capable of outputting the highest thrust forces can power the AUV to swim at speeds of up to 0.55body lengths per second. The speed falls in the upper range of untethered swimming robots powered by soft actuators. Our tunable DEAs also demonstrate the potential to mimic the undulatory motions of fish fins.\
}, year = {2018}, journal = {Intl. Conf. on Robotics and Automation (ICRA)}, note = {(finalist for Best Conference Paper and Best Student Paper Awards)}, language = {eng}, }